摘要:
The present invention involves a process and materials for desulfurization of a gaseous stream comprising contacting the gas stream with a manganese aluminate catalyst. The manganese aluminate catalyst is preferably selected from the group consisting of Mn2xAl2O2x+3, Mn(2−y)(MnO)yAl2O(5−y), Mn(4−y)(MnO)yAl2O(7−y), Mn(6−y)(MnO)yAl2O(9−y), Mn(1−z)(MnO)zAlO(3−z) and intermediates thereof, wherein x≧0.5, 0≦y≦2 and 0≦z≦1. Preferably, x is between 1 and 3.
摘要:
A process for removing a nitrogen compound from a fuel feed, such as vacuum gas oil or diesel fuel, wherein the process includes contacting the fuel feed comprising the nitrogen compound with a fuel-immiscible caprolactamium ionic liquid to produce a fuel and fuel-immiscible caprolactamium ionic liquid mixture, and separating the mixture to produce a vacuum gas oil or a diesel effluent having a reduced nitrogen content relative to the vacuum gas oil or diesel feed. The invention provides an alternate use for caprolactamium ionic liquid that is produced in large quantities for the manufacture of caprolactam.
摘要:
A process for removing a metal from a vacuum gas oil feed includes contacting the vacuum gas oil feed comprising the metal with a VGO-immiscible ionic liquid to produce a vacuum gas oil and VGO-immiscible ionic liquid mixture, and separating the mixture to produce a vacuum gas oil effluent having a reduced metal content relative to the vacuum gas oil feed.
摘要:
A process for removing a metal from a resid feed includes contacting the resid feed comprising the metal with a resid-immiscible ionic liquid to produce a resid and resid-immiscible ionic liquid mixture, and separating the mixture to produce a resid effluent having a reduced metal content relative to the resid feed.
摘要:
A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and partially processing each feedstream in separate reactors. The processing includes passing the light stream to a combination hydrogenation/dehydrogenation reactor. The process reduces the energy by reducing the endothermic properties of intermediate reformed process streams.
摘要:
One embodiment is a catalyst for catalytic reforming of naphtha. The catalyst can have a noble metal including one or more of platinum, palladium, rhodium, ruthenium, osmium, and iridium, an alkali or alkaline-earth metal, a lanthanide-series metal, and a support. Generally, an average bulk density of the catalyst is about 0.300 to about 1.00 gram per cubic centimeter. The catalyst has a platinum content of less than about 0.375 wt %, a tin content of about 0.1 to about 2 wt %, a potassium content of about 100 to about 600 wppm, and a cerium content of about 0.1 to about 1 wt %. The lanthanide-series metal can be distributed at a concentration of the lanthanide-series metal in a 100 micron surface layer of the catalyst less than two times a concentration of the lanthanide-series metal at a central core of the catalyst.
摘要:
One exemplary embodiment can be a catalyst for catalytic reforming of naphtha. The catalyst can have a noble metal including one or more of platinum, palladium, rhodium, ruthenium, osmium, and iridium, at least two alkali metals or at least two alkaline earth metals, or mixtures of alkali metals and alkaline earth metals and a support.
摘要:
One exemplary embodiment can be a catalyst for catalytic reforming of naphtha. The catalyst can have a noble metal including one or more of platinum, palladium, rhodium, ruthenium, osmium, and iridium, at least two alkali metals or at least two alkaline earth metals, or mixtures of alkali metals and alkaline earth metals and a support.
摘要:
A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
摘要:
An exemplary embodiment can be a process for removing one or more polynuclear aromatics from at least one reformate stream from a reforming zone. The PNAs may be removed using an adsorption zone. The adsorption zone can include first and second vessels each vessel containing an activated carbon adsorbent. Generally, the process includes passing the at least a portion of an effluent of the reforming zone through the first vessel containing a first activated carbon adsorbent wherein the first activated carbon adsorbent comprises iron.