Abstract:
Methods of forming a material include exposing a substrate to a first germanium-containing compound and a second, different germanium-containing compound; exposing the substrate to a first antimony-containing compound and a second, different antimony-containing compound; and exposing the substrate to a first tellurium-containing compound and a second, different tellurium-containing compound. Methods of forming chalcogenide materials include exposing a substrate to a first precursor comprising a reactive precursor of a first metal and a co-reactive precursor of the first metal, the reactive precursor and the co-reactive precursor each having at least one ligand coordinated to an atom of the first metal, wherein the at least one ligand of the co-reactive precursor is different from the at least one ligand of the reactive precursor. The substrate is also exposed to a reactive antimony precursor and a co-reactive antimony precursor and to a reactive tellurium precursor and a co-reactive tellurium precursor.
Abstract:
Horizontally oriented and vertically stacked memory cells are described herein. One or more method embodiments include forming a vertical stack having a first insulator material, a first memory cell material on the first insulator material, a second insulator material on the first memory cell material, a second memory cell material on the second insulator material, and a third insulator material on the second memory cell material, forming an electrode adjacent a first side of the first memory cell material and a first side of the second memory cell material, and forming an electrode adjacent a second side of the first memory cell material and a second side of the second memory cell material.
Abstract:
Methods of forming a material include exposing a substrate to a first germanium-containing compound and a second, different germanium-containing compound; exposing the substrate to a first antimony-containing compound and a second, different antimony-containing compound; and exposing the substrate to a first tellurium-containing compound and a second, different tellurium-containing compound. Methods of forming chalcogenide materials include exposing a substrate to a first precursor comprising a reactive precursor of a first metal and a co-reactive precursor of the first metal, the reactive precursor and the co-reactive precursor each having at least one ligand coordinated to an atom of the first metal, wherein the at least one ligand of the co-reactive precursor is different from the at least one ligand of the reactive precursor. The substrate is also exposed to a reactive antimony precursor and a co-reactive antimony precursor and to a reactive tellurium precursor and a co-reactive tellurium precursor.
Abstract:
Accordingly, a method of forming a metal chalcogenide material may comprise introducing at least one metal precursor and at least one chalcogen precursor into a chamber comprising a substrate, the at least one metal precursor comprising an amine or imine compound of an alkali metal, an alkaline earth metal, a transition metal, a post-transition metal, or a metalloid, and the at least one chalcogen precursor comprising a hydride, alkyl, or aryl compound of sulfur, selenium, or tellurium. The at least one metal precursor and the at least one chalcogen precursor may be reacted to form a metal chalcogenide material over the substrate. A method of forming a metal telluride material, a method of forming a semiconductor device structure, and a semiconductor device structure are also described.
Abstract:
A method of depositing an antimony-comprising phase change material onto a substrate includes providing a reducing agent and vaporized Sb(OR)3 to a substrate, where R is alkyl, and forming there-from antimony-comprising phase change material on the substrate. The phase change material has no greater than 10 atomic percent oxygen, and includes another metal in addition to antimony.
Abstract:
Memory cells are disclosed, which cells include a cell material and an ion-source material over the cell material. A discontinuous interfacial material is included between the cell material and the ion-source material. Also disclosed are fabrication methods and semiconductor devices including the disclosed memory cells.
Abstract:
Memory cells are disclosed, which cells include a cell material and an ion-source material over the cell material. A discontinuous interfacial material is included between the cell material and the ion-source material. Also disclosed are fabrication methods and semiconductor devices including the disclosed memory cells.
Abstract:
Resistive memory having confined filament formation is described herein. One or more method embodiments include forming an opening in a stack having a silicon material and an oxide material on the silicon material, and forming an oxide material in the opening adjacent the silicon material, wherein the oxide material formed in the opening confines filament formation in the resistive memory cell to an area enclosed by the oxide material formed in the opening.
Abstract:
Some embodiments include methods utilizing atomic layer deposition to form material containing silicon and nitrogen (e.g., silicon nitride). The atomic layer deposition uses SiI4 as one precursor and uses a nitrogen-containing material as another precursor. Some embodiments include methods of forming a structure in which a chalcogenide region is formed over a semiconductor substrate; and in which SiI4 is used as a precursor during formation of silicon nitride material directly against a surface of the chalcogenide region.
Abstract:
Memory cells are disclosed, which cells include a cell material and an ion-source material over the cell material. A discontinuous interfacial material is included between the cell material and the ion-source material. Also disclosed are fabrication methods and semiconductor devices including the disclosed memory cells.