摘要:
Systems and methods for improving wireless access point communications are provided. Some embodiments contemplate filtering operations such that two or more radios can be used in the 5 GHz or 2.4 GHz band without interfering with each other. Some embodiments employ discrete Low Noise Amplifiers (LNA) and Power Amplifiers (PA) as well as frontend modules. In some examples, filtering may be primarily used on the receiving side to filter out other signals in 5 GHz before they are amplified by an external LNA or LNAs, e.g., as integrated in a WLAN chipset. Filtering may also be performed on the transmit side in some embodiments.
摘要:
The disclosed teachings relate to intruder detection. Some of the subject matter described herein includes a computer-implemented method for detecting physical movement using a wireless mesh network that provides wireless data communication, the wireless mesh network having a plurality of mesh points, each mesh point having a wireless coverage, the method including compiling a database of known devices based on monitoring unique identifiers of known devices that have previously conducted communication with the wireless mesh network through the plurality of mesh points; upon detecting a physical presence of a subject device within a physical space of the wireless mesh network, determining, based on the database of known devices, whether the physical presence of the subject device belongs to an anomaly; and when the physical presence of the subject device is determined to be an anomaly, causing a security action to be performed.
摘要:
Client roaming techniques, such as those set forth in 802.11k, are extended to access point-based client roaming in a distributed multi-band wireless networking system. In particular, access points (APs) implement a series of algorithms that compare signals and make decisions on when to switch a client from one AP to another AP in a distributed multi-band wireless networking system. The invention exploits to advantage the fact that the APs can communicate with each other via the dedicated backhaul.
摘要:
Various of the disclosed embodiments provide systems and methods for enabling LTE® and wireless, e.g., ISM band, applications to coexist on a same device or on separate devices in proximity to one another. Some embodiments implement a remediation and/or channel transition process for the wireless devices following detection of LTE®-related interference. During remediation, the device may, e.g., adjust the wireless power levels, EDCA backoff times, signal thresholds, etc. In some embodiments, if the remediation actions prove ineffective, the wireless peers may be relocated to a channel further from the interfering LTE® band. The determination to remediate or reallocate may be based on various contextual factors, e.g., the character of the peer devices and the applications being run.
摘要:
Various embodiments are described herein that improve the signal reception and transmission capabilities of an access point by coupling an active antenna assembly to the access point. An active antenna assembly includes an antenna and at least one active component, such as a low-noise amplifier or a power amplifier. The active component can be connected to an antenna circuit board rather than the main circuit board of the access point, which is typically retained within an access point housing. By positioning the active component near the antenna, the active antenna assembly prevents degradation of signals received by the antenna. One or more coaxial cables can be used to connect the active component of the active antenna assembly to the main circuit board of the access point.
摘要:
Techniques are disclosed for reducing interference, in a network device, among multiple radio circuits operating in a same or similar frequency band and in close physical proximity. In some embodiments, a network device includes a first and a second wireless network circuit. The network circuits operate in a same radio frequency band and are collocated. The second network circuit is assigned a higher priority than the first network circuit. The device further includes a coexistence controller coupled to the network circuits via a communication bus and configured to selectively suppress transmitting operations of the first network circuit during receiving operations of the second network circuit. Among other benefits, the embodiments can increase wireless network bandwidth and reduce mobile device power consumption by providing coordination among the radio circuits so that the transmitting and receiving operations are performed in a way that they do not interfere with their respective antennas.
摘要:
Antenna designs are disclosed that exhibit both high bandwidth and efficiency. A first aspect of the invention concerns the form factor of the antenna; a second aspect of the invention concerns the ease with which the antenna is manufactured; and a third aspect concerns the superior performance exhibits by the antenna across a large bandwidth.
摘要:
Various of the disclosed embodiments improve the operations of a combined access point/Cable modem. Though the access point component and the Cable modem component may perform operations in different spectrums, harmonics in the Cable spectrum may interfere with operations, e.g., in the 2.4 GHz and 5 GHz range, of the access point. Some embodiments implement a remediation and/or channel transition process for the access point following detection of Cable-related interference. During remediation, the device may, e.g., adjust the wireless power levels, EDCA backoff times, signal thresholds, etc. In some embodiments, if the remediation actions prove ineffective, the wireless peers may be relocated to a channel further from the interfering Cable harmonics. The determination to remediate or reallocate may be based on various contextual factors, e.g., the character of the peer devices and the applications being run.
摘要:
Techniques are disclosed for reducing interference, in a network device, among multiple radio circuits operating in a same or similar frequency band and in close physical proximity. In some embodiments, a network device includes a first and a second wireless network circuit. The network circuits operate in a same radio frequency band and are collocated. The second network circuit is assigned a higher priority than the first network circuit. The device further includes a coexistence controller coupled to the network circuits via a communication bus and configured to selectively suppress transmitting operations of the first network circuit during receiving operations of the second network circuit. Among other benefits, the embodiments can increase wireless network bandwidth and reduce mobile device power consumption by providing coordination among the radio circuits so that the transmitting and receiving operations are performed in a way that they do not interfere with their respective antennas.
摘要:
Systems and methods for enabling a wireless local area network (WLAN) client to communicate simultaneously over more than one band at a time are described, where each client has at least one radio that is operational in each supported band. Load balancing based on traffic requirements optimizes the use of the multiple bands.