Abstract:
One embodiment of the present invention is a parallel processing unit (PPU) that includes one or more streaming multiprocessors (SMs) and implements a replay unit per SM. Upon detecting a page fault associated with a memory transaction issued by a particular SM, the corresponding replay unit causes the SM, but not any unaffected SMs, to cease issuing new memory transactions. The replay unit then stores the faulting memory transaction and any faulting in-flight memory transaction in a replay buffer. As page faults are resolved, the replay unit replays the memory transactions in the replay buffer—removing successful memory transactions from the replay buffer—until all of the stored memory transactions have successfully executed. Advantageously, the overall performance of the PPU is improved compared to conventional PPUs that, upon detecting a page fault, stop performing memory transactions across all SMs included in the PPU until the fault is resolved.
Abstract:
One embodiment of the present invention sets forth a computer-implemented method for altering migration rules for a unified virtual memory system. The method includes detecting that a migration rule trigger has been satisfied. The method also includes identifying a migration rule action that is associated with the migration rule trigger. The method further includes executing the migration rule action. Other embodiments of the present invention include a computer-readable medium, a computing device, and a unified virtual memory subsystem. One advantage of the disclosed approach is that various settings of the unified virtual memory system may be modified during program execution. This ability to alter the settings allows for an application to vary the manner in which memory pages are migrated and otherwise manipulated, which provides the application the ability to optimize the unified virtual memory system for efficient execution.
Abstract:
One embodiment of the present invention sets forth a computer-implemented method for migrating a memory page from a first memory to a second memory. The method includes determining a first page size supported by the first memory. The method also includes determining a second page size supported by the second memory. The method further includes determining a use history of the memory page based on an entry in a page state directory associated with the memory page. The method also includes migrating the memory page between the first memory and the second memory based on the first page size, the second page size, and the use history.
Abstract:
A graphics processing system configured to track per-tile event counts in a tile-based architecture. A tiling unit in the graphics processing system is configured to cause a screen-space pipeline to load a count value associated with a first cache tile into a count memory and to cause the screen-space pipeline to process a first set of primitives that intersect the first cache tile. The tiling unit is further configured to cause the screen-space pipeline to store a second count value in a report memory location. The tiling unit is also configured to cause the screen-space pipeline to process a second set of primitives that intersect the first cache tile and to cause the screen-space pipeline to store a third count value in the first accumulating memory. Conditional rendering operations may be performed on a per-cache tile basis, based on the per-tile event count.
Abstract:
A parallel processing unit (PPU) can be divided into partitions. Each partition is configured to operate similarly to how the entire PPU operates. A given partition includes a subset of the computational and memory resources associated with the entire PPU. Software that executes on a CPU partitions the PPU for an admin user. A guest user is assigned to a partition and can perform processing tasks within that partition in isolation from any other guest users assigned to any other partitions. Because the PPU can be divided into isolated partitions, multiple CPU processes can efficiently utilize PPU resources.
Abstract:
A parallel processing unit (PPU) can be divided into partitions. Each partition is configured to operate similarly to how the entire PPU operates. A given partition includes a subset of the computational and memory resources associated with the entire PPU. Software that executes on a CPU partitions the PPU for an admin user. A guest user is assigned to a partition and can perform processing tasks within that partition in isolation from any other guest users assigned to any other partitions. Because the PPU can be divided into isolated partitions, multiple CPU processes can efficiently utilize PPU resources.
Abstract:
Techniques are disclosed for tracking memory page accesses in a unified virtual memory system. An access tracking unit detects a memory page access generated by a first processor for accessing a memory page in a memory system of a second processor. The access tracking unit determines whether a cache memory includes an entry for the memory page. If so, then the access tracking unit increments an associated access counter. Otherwise, the access tracking unit attempts to find an unused entry in the cache memory that is available for allocation. If so, then the access tracking unit associates the second entry with the memory page, and sets an access counter associated with the second entry to an initial value. Otherwise, the access tracking unit selects a valid entry in the cache memory; clears an associated valid bit; associates the entry with the memory page; and initializes an associated access counter.
Abstract:
Embodiments of the present invention set forth techniques for allocating execution resources to groups of threads within a graphics processing unit. A compute work distributor included in the graphics processing unit receives an indication from a process that a first group of threads is to be launched. The compute work distributor determines that a first subcontext associated with the process has at least one processor credit. In some embodiments, CTAs may be launched even when there are no processor credits, if one of the TPCs that was already acquired has sufficient space. The compute work distributor identifies a first processor included in a plurality of processors that has a processing load that is less than or equal to the processor loads associated with all other processors included in the plurality of processors. The compute work distributor launches the first group of threads to execute on the first processor.
Abstract:
Embodiments of the present invention set forth techniques for allocating execution resources to groups of threads within a graphics processing unit. A compute work distributor included in the graphics processing unit receives an indication from a process that a first group of threads is to be launched. The compute work distributor determines that a first subcontext associated with the process has at least one processor credit. In some embodiments, CTAs may be launched even when there are no processor credits, if one of the TPCs that was already acquired has sufficient space. The compute work distributor identifies a first processor included in a plurality of processors that has a processing load that is less than or equal to the processor loads associated with all other processors included in the plurality of processors. The compute work distributor launches the first group of threads to execute on the first processor.
Abstract:
One embodiment of the present invention sets forth a graphics processing system configured to track event counts in a tile-based architecture. The graphics processing system includes a screen-space pipeline and a tiling unit. The screen-space pipeline includes a first unit, a count memory associated with the first unit, and an accumulating memory associated with the first unit. The first unit is configured to detect an event type and increment the count memory. The tiling unit is configured to cause the screen-space pipeline to update an external memory address to reflect a first value stored in the count memory when the first unit completes processing of a first set of primitives. The tiling unit is also configured to cause the screen-space pipeline to update the accumulating memory to reflect a second value stored in the count memory when the first unit completes processing of a second set of primitives.