Abstract:
Apparatuses, systems, and techniques to determine metrics for paths connecting hardware components, select a plurality of groups of the hardware components based at least in part on the metrics, and perform at least a portion of a workload using a selected group of the plurality of groups.
Abstract:
One embodiment of the present invention sets forth a computer-implemented method for migrating a memory page from a first memory to a second memory. The method includes determining a first page size supported by the first memory. The method also includes determining a second page size supported by the second memory. The method further includes determining a use history of the memory page based on an entry in a page state directory associated with the memory page. The method also includes migrating the memory page between the first memory and the second memory based on the first page size, the second page size, and the use history.
Abstract:
Techniques are provided by which memory pages may be migrated among PPU memories in a multi-PPU system. According to the techniques, a UVM driver determines that a particular memory page should change ownership state and/or be migrated between one PPU memory and another PPU memory. In response to this determination, the UVM driver initiates a peer transition sequence to cause the ownership state and/or location of the memory page to change. Various peer transition sequences involve modifying mappings for one or more PPU, and copying a memory page from one PPU memory to another PPU memory. Several steps in peer transition sequences may be performed in parallel for increased processing speed.
Abstract:
A system for managing virtual memory. The system includes a first processing unit configured to execute a first operation that references a first virtual memory address. The system also includes a first memory management unit (MMU) associated with the first processing unit and configured to generate a first page fault upon determining that a first page table that is stored in a first memory unit associated with the first processing unit does not include a mapping corresponding to the first virtual memory address. The system further includes a first copy engine associated with the first processing unit. The first copy engine is configured to read a first command queue to determine a first mapping that corresponds to the first virtual memory address and is included in a first page state directory. The first copy engine is also configured to update the first page table to include the first mapping.
Abstract:
One embodiment of the present invention sets forth a computer-implemented method for migrating a memory page from a first memory to a second memory. The method includes determining a first page size supported by the first memory. The method also includes determining a second page size supported by the second memory. The method further includes determining a use history of the memory page based on an entry in a page state directory associated with the memory page. The method also includes migrating the memory page between the first memory and the second memory based on the first page size, the second page size, and the use history.
Abstract:
Systems and methods are disclosed for throttling memory bandwidth accessed by virtual machines (VMs). A technique for dynamically throttling the virtual computer processing units (vCPUs) assigned to a VM (tenant) controls the memory access rate of the VM. When the memory is shared by multiple VMs in a cloud-computing environment, one VM increasing its memory access rate may cause another VM to suffer memory access starvation. This behavior violates the principle of VM isolation in cloud computing. In contrast to conventional systems, a software solution for dynamically throttling the vCPUs may be implemented within a hypervisor and is therefore portable across CPU families and doesn't require specialized server-class CPU capabilities or limit the system configuration.
Abstract:
A system for managing virtual memory. The system includes a first processing unit configured to execute a first operation that references a first virtual memory address. The system also includes a first memory management unit (MMU) associated with the first processing unit and configured to generate a first page fault upon determining that a first page table that is stored in a first memory unit associated with the first processing unit does not include a mapping corresponding to the first virtual memory address. The system further includes a first copy engine associated with the first processing unit. The first copy engine is configured to read a first command queue to determine a first mapping that corresponds to the first virtual memory address and is included in a first page state directory. The first copy engine is also configured to update the first page table to include the first mapping.
Abstract:
A device for processing graphics data includes a plurality of graphics processing units. Each graphics processing unit may correspond to a virtualized operating system. Each graphics processing unit may include a configuration register indicating a 3D class code and a command register indicating that I/O cycle decoding is disabled. The device may be configured to transmit a configuration register value to a virtualized operating system indicating a VGA-compatible class code. The device may be configured to transmit a command register value to the virtualized operating system that indicates that I/O cycle decoding is enabled. In this manner, legacy bus architecture of the device may not limit the number of graphics processing units deployed in the device.
Abstract:
Systems and methods are disclosed for throttling memory bandwidth accessed by virtual machines (VMs). A technique for dynamically throttling the virtual computer processing units (vCPUs) assigned to a VM (tenant) controls the memory access rate of the VM. When the memory is shared by multiple VMs in a cloud-computing environment, one VM increasing its memory access rate may cause another VM to suffer memory access starvation. This behavior violates the principle of VM isolation in cloud computing. In contrast to conventional systems, a software solution for dynamically throttling the vCPUs may be implemented within a hypervisor and is therefore portable across CPU families and doesn't require specialized server-class CPU capabilities or limit the system configuration.
Abstract:
A system for managing virtual memory. The system includes a first processing unit configured to execute a first operation that references a first virtual memory address. The system also includes a first memory management unit (MMU) associated with the first processing unit and configured to generate a first page fault upon determining that a first page table that is stored in a first memory unit associated with the first processing unit does not include a mapping corresponding to the first virtual memory address. The system further includes a first copy engine associated with the first processing unit. The first copy engine is configured to read a first command queue to determine a first mapping that corresponds to the first virtual memory address and is included in a first page state directory. The first copy engine is also configured to update the first page table to include the first mapping.