Single-exposure high dynamic range sensor

    公开(公告)号:US10411063B2

    公开(公告)日:2019-09-10

    申请号:US15628304

    申请日:2017-06-20

    Abstract: A single-exposure high dynamic range (HDR) image sensor includes a first photodiode and a second photodiode, with a smaller full-well capacity than the first photodiode, disposed in a semiconductor material. The image sensor also includes a first floating diffusion disposed in the semiconductor material and a first transfer gate coupled to the first photodiode to transfer first image charge accumulated in the first photodiode into the first floating diffusion. A second floating diffusion is disposed in the semiconductor material and a second transfer gate is coupled to the second photodiode to transfer second image charge accumulated in the second photodiode into the second floating diffusion. An attenuation layer is disposed between the second photodiode and image light directed towards the single-exposure HDR image sensor to block a portion of the image light from reaching the second photodiode.

    Storage gate protection
    42.
    发明授权

    公开(公告)号:US10269846B2

    公开(公告)日:2019-04-23

    申请号:US15799198

    申请日:2017-10-31

    Abstract: A method of backside illuminated image sensor fabrication includes forming a plurality of photodiodes in a semiconductor material, where the plurality of photodiodes are disposed to receive image light through a backside of the backside illuminated image sensor. The method further includes forming a transfer gate coupled to extract image charge from a photodiode in the plurality of photodiodes, and forming a storage gate coupled to the transfer gate to receive the image charge. Forming the storage gate includes forming an optical shield in the semiconductor material; depositing a gate electrode proximate to a frontside of the semiconductor material; and implanting a storage node in the semiconductor material, where the storage node is disposed in the semiconductor material between the optical shield and the gate electrode.

    SOURCE FOLLOWER CONTACT
    43.
    发明申请

    公开(公告)号:US20190109169A1

    公开(公告)日:2019-04-11

    申请号:US16150135

    申请日:2018-10-02

    Abstract: An image sensor includes a photodiode disposed in a first semiconductor material to absorb photons incident on the image sensor and generate image charge. A floating diffusion is disposed in the first semiconductor material and positioned to receive the image charge from the photodiode, and a transfer transistor is coupled between the photodiode and the floating diffusion to transfer the image charge out of the photodiode into floating diffusion in response to a transfer signal. A source follower transistor with a gate terminal is coupled to the floating diffusion to output an amplified signal of the image charge in the floating diffusion. The gate terminal includes a second semiconductor material in contact with the floating diffusion, and a gate oxide is partially disposed between the second semiconductor material and the first semiconductor material. The second semiconductor material extends beyond the lateral bounds of the floating diffusion.

    Manufacturing method of image sensor including source follower contact to floating diffusion

    公开(公告)号:US10128299B1

    公开(公告)日:2018-11-13

    申请号:US15728893

    申请日:2017-10-10

    Abstract: An image sensor includes a photodiode disposed in a first semiconductor material to absorb photons incident on the image sensor and generate image charge. A floating diffusion is disposed in the first semiconductor material and positioned to receive the image charge from the photodiode, and a transfer transistor is coupled between the photodiode and the floating diffusion to transfer the image charge out of the photodiode into floating diffusion in response to a transfer signal. A source follower transistor with a gate terminal is coupled to the floating diffusion to output an amplified signal of the image charge in the floating diffusion. The gate terminal includes a second semiconductor material in contact with the floating diffusion, and a gate oxide is partially disposed between the second semiconductor material and the first semiconductor material. The second semiconductor material extends beyond the lateral bounds of the floating diffusion.

    Method and apparatus for high resolution digital photography from multiple image sensor frames

    公开(公告)号:US10104285B2

    公开(公告)日:2018-10-16

    申请号:US15249787

    申请日:2016-08-29

    Abstract: A camera system has a lens focusing incoming light through a deflector system having at least one deflector plate onto a photosensor array. An image processor captures at least a first image with the deflector system in a first position and a second image with the deflector system in a second position to provide a focal point offset in a first axis on the photosensor array, and the firmware is configured to prepare an enhanced image from at least the first and second images. A method of imaging includes focusing incoming light through a deflector system having at least one deflector plate onto a photosensor array; receiving at least a first image with the deflector system in a first position; receiving a second image with the deflector system configured providing a focal point offset on the photosensor array; and preparing an enhanced image from the first and second images.

    Self-aligned optical grid on image sensor

    公开(公告)号:US10103194B2

    公开(公告)日:2018-10-16

    申请号:US15276000

    申请日:2016-09-26

    Abstract: An image sensor includes a substrate, a plurality of light sensitive pixels, a first plurality of color filters, a plurality of reflective sidewalls, and a second plurality of color filters. The light sensitive pixels are formed on said substrate. The first plurality of color filters is disposed over a first group of the light sensitive pixels. The reflective sidewalls are formed on each side of each of the first plurality of color filters. The second plurality of color filters are disposed over a second group of light sensitive pixels and each color filter of the second plurality of color filters is separated from each adjacent filter of said first plurality of color filters by one of the reflective sidewalls. In a particular embodiment an etch-resistant layer is disposed over the first plurality of color filters and the second group of light sensitive pixels.

    Graded-semiconductor image sensor
    48.
    发明授权

    公开(公告)号:US10103185B2

    公开(公告)日:2018-10-16

    申请号:US15874648

    申请日:2018-01-18

    Abstract: A method of image sensor fabrication includes growing a semiconductor material having an illuminated surface and a non-illuminated surface, where the semiconductor material includes silicon and germanium and a germanium concentration increases in a direction of the non-illuminated surface. The method further includes forming a plurality of photodiodes, including a doped region and a heavily doped region, in the semiconductor material, where the doped region is of an opposite majority charge carrier type as the heavily doped region. A plurality of isolation regions are formed and disposed between individual photodiodes in the plurality of photodiodes, where the plurality of isolation regions surround, at least in part, the individual photodiodes and electrically isolate the individual photodiodes.

    Storage Gate Protection
    49.
    发明申请

    公开(公告)号:US20180151610A1

    公开(公告)日:2018-05-31

    申请号:US15799198

    申请日:2017-10-31

    Abstract: A method of backside illuminated image sensor fabrication includes forming a plurality of photodiodes in a semiconductor material, where the plurality of photodiodes are disposed to receive image light through a backside of the backside illuminated image sensor. The method further includes forming a transfer gate coupled to extract image charge from a photodiode in the plurality of photodiodes, and forming a storage gate coupled to the transfer gate to receive the image charge. Forming the storage gate includes forming an optical shield in the semiconductor material; depositing a gate electrode proximate to a frontside of the semiconductor material; and implanting a storage node in the semiconductor material, where the storage node is disposed in the semiconductor material between the optical shield and the gate electrode.

Patent Agency Ranking