Abstract:
An imaging system having four image sensors comprises a first dichroic filter, a second dichroic filter, and a third dichroic filter. The first dichroic filter reflects light having a first wavelength band and a second wavelength band toward a second dichroic filter, and transmits light having a third wavelength band and a fourth wavelength band toward the third dichroic filter. The second dichroic filter reflects light having the first wavelength band toward the first image sensor, and transmits light having the second wavelength band toward the second image sensor. The third dichroic filter reflects light having the third wavelength band toward the third image sensor, and transmits light having the fourth wavelength band toward the fourth image sensor. The first dichroic filter, the second dichroic filter, and the third dichroic filter are included in an integrated part.
Abstract:
A novel multi-display projection box includes a housing that is short and wide, a set of display panels, a set of projectors, and a controller. In a particular embodiment the set of display panels includes two display panels, each coupled to opposite sides of the housing. The set of projectors includes two projectors placed adjacent opposite side walls of the housing. One of the projectors projects a first image onto one of the display panels and the other projector projects a second image onto the other display panel. The first and second image can include product information corresponding to goods placed atop the projection box in a retail store.
Abstract:
An imaging system for capturing an image of an object comprises a first lens, a dichroic beam splitter, which transmits light of a color band and reflects light of all colors outside the color band, a first image sensor for capturing an image formed by the transmitted light in the color band, a second image sensor for capturing an image formed by the reflected light outside the color band. The first image sensor is a monochrome image sensor and the second image sensor is a color image sensor having a color filter array disposed on pixels of the second image sensor. The image captured by the first image sensor and the image captured by the second image sensor are combined to form a single color image.
Abstract:
A wafer-level liquid-crystal-on-silicon (LCOS) projection assembly includes a LCOS display for spatially modulating light incident on the LCOS display and a polarizing beam-separating (PBS) layer for directing light to and from the LCOS display. A method for fabricating a LCOS projection system includes disposing a PBS wafer above an active-matrix wafer. The active-matrix wafer includes a plurality of active matrices for addressing liquid crystal display pixels. The method, further includes disposing a lens wafer above the PBS wafer. The lens wafer includes a plurality of lenses. Additionally, a method for fabricating a wafer-level polarizing beam includes bonding a PBS wafer and at least one other wafer to form a stacked wafer. The PBS wafer includes a PBS layer that contains a plurality of PBS film bands.
Abstract:
A near-eye display device includes (a) a display unit having a liquid-crystal-on-silicon (LCOS) display and a first polarizing beam splitter interface for (i) reflecting illumination light from an illumination module towards the liquid-crystal-on-silicon display and (ii) transmitting display light from the LCOS display based on the illumination light, and (b) a viewing unit having an imaging objective that forms an image of the LCOS display for the pupil based on the display light, and a second polarizing beam splitter interface for (i) reflecting reflected display light from the imaging objective towards the pupil and (ii) transmitting ambient light from an ambient scene towards a pupil, the second polarizing beam splitter interface and the first polarizing beam splitter interface being orthogonal to a common plane.
Abstract:
A novel multi-display projection box includes a housing that is short and wide, a set of display panels, a set of projectors, and a controller. In a particular embodiment the set of display panels includes two display panels, each coupled to opposite sides of the housing. The set of projectors includes two projectors placed adjacent opposite side walls of the housing. One of the projectors projects a first image onto one of the display panels and the other projector projects a second image onto the other display panel. The first and second image can include product information corresponding to goods placed atop the projection box in a retail store.
Abstract:
A liquid-crystal-on-silicon (LCOS) panel includes a wafer having bond pads thereon, a liquid crystal layer, and a conductive layer. The panel carrier for the LCOS panel includes a conductive-layer electrode for electrically connecting the conductive layer to a printed circuit assembly (PCA), address electrodes for electrically connecting the bond pads to the PCA, and a cavity for holding the LCOS panel. The cavity includes a conductive pad for electrically connecting the conductive layer to the conductive-layer electrode, and bond-pad electrodes for electrically connecting each bond pad to a respective address electrode. A method for electrically connecting an LCOS panel to a panel carrier includes a step of electrically connecting each bond pad to a respective address electrode, and a step of electrically connecting the conductive layer to the conductive pad.
Abstract:
A liquid crystal on silicon (LCOS) panel is provided that includes an electrical contact layer deposited in a pattern on a portion of a transparent conductive layer. An alignment layer protects the conductive layer and electrical contact layer during LCOS panel assembly. The alignment layer is etched away to expose the electrical contact, which protects the underlying conductive layer from the etching process. The resulting LCOS panel has more reliably formed electrical contacts for improved stability of electrical connections to the conductive layer. A method for forming an electrical contact layer on a conductive layer of a LCOS panel includes steps for depositing a patterned layer on a portion of the conductive layer. The method is compatible with microfabrication techniques for scalable manufacturing. The resulting LCOS panel includes a pattern of one or more electrical contacts exposed on a portion of the conductive layer.
Abstract:
An image sensor includes a photosensing element for receiving infrared (IR) radiation and detecting the IR radiation and generating an electrical signal indicative of the IR radiation. A redistribution layer (RDL) is disposed under the photosensing element, the RDL comprising pattern of conductors for receiving the electrical signal. An IR reflection layer, an IR absorption layer or an isolation layer is disposed between the photosensing element and the RDL. The IR reflection layer, IR absorption layer or isolation layer provides a barrier to IR radiation such that the IR radiation does not impinge upon the RDL. As a result, a ghost image of the RDL is not generated, resulting in reduced noise and improved sensitivity and performance of the image sensor.
Abstract:
An image sensor includes a photosensing element for receiving infrared (IR) radiation and detecting the IR radiation and generating an electrical signal indicative of the IR radiation. A redistribution layer (RDL) is disposed under the photosensing element, the RDL comprising pattern of conductors for receiving the electrical signal. An IR reflection layer, an IR absorption layer or an isolation layer is disposed between the photosensing element and the RDL. The IR reflection layer, IR absorption layer or isolation layer provides a barrier to IR radiation such that the IR radiation does not impinge upon the RDL. As a result, a ghost image of the RDL is not generated, resulting in reduced noise and improved sensitivity and performance of the image sensor.