Abstract:
A storage cluster is provided. The storage cluster includes a plurality of storage nodes, each of the plurality of storage nodes having nonvolatile solid-state memory and a plurality of operations queues coupled to the solid-state memory. The plurality of storage nodes is configured to distribute the user data and metadata throughout the plurality of storage nodes such that the plurality of storage nodes can access the user data with a failure of two of the plurality of storage nodes. Each of the plurality of storage nodes is configured to determine whether a read of 1 or more bits in the solid-state memory via a first path is within a latency budget. The plurality of storage nodes is configured to perform a read of user data or metadata via a second path, responsive to a determination that the read of the bit via the first path is not within the latency budget.
Abstract:
A method for accessing a file in a storage system is provided. The method includes determining, for each file chunk of the file, an authority among differing storage nodes of the storage system and receiving from the authority having ownership of the file chunk, location information for the file chunk. The method includes accessing file chunks of the file as directed by each of the determined authorities.
Abstract:
A system, method, and computer-readable storage medium for protecting a set of storage devices using a secret sharing scheme. The data of each storage device is encrypted with a key, and the key is encrypted based on a shared secret and a device-specific value. Each storage device stores a share and its encrypted key, and if a number of storage devices above a threshold are available, then the shared secret can be reconstructed from the shares and used to decrypt the encrypted keys. Otherwise, the secret cannot be reconstructed if less than the threshold number of storage devices are accessible, and then data on the storage devices will be unreadable.
Abstract:
A storage system is provided. The storage system includes a plurality of storage units, each of the plurality of storage units having storage memory for user data and a plurality of storage nodes, each of the plurality of storage nodes configured to have ownership of a portion of the user data. The storage system includes a first pathway, coupling the plurality of storage units such that each of the plurality of storage units can communicate with at least one other of the plurality of storage units via the first pathway without assistance from the plurality of storage nodes.
Abstract:
A plurality of storage nodes within a single chassis is provided. The plurality of storage nodes is configured to communicate together as a storage cluster. The plurality of storage nodes has a non-volatile solid-state storage for user data storage. The plurality of storage nodes is configured to distribute the user data and metadata associated with the user data throughout the plurality of storage nodes, with erasure coding of the user data. The plurality of storage nodes is configured to recover from failure of two of the plurality of storage nodes by applying the erasure coding to the user data from a remainder of the plurality of storage nodes. The plurality of storage nodes is configured to detect an error and engage in an error recovery via one of a processor of one of the plurality of storage nodes, a processor of the non-volatile solid state storage, or the flash memory.
Abstract:
A system and method for efficiently performing user storage virtualization for data stored in a storage system including a plurality of solid-state storage devices. A data storage subsystem supports multiple mapping tables. Records within a mapping table are arranged in multiple levels. Each level stores pairs of a key value and a pointer value. The levels are sorted by time. New records are inserted in a created newest (youngest) level. No edits are performed in-place. All levels other than the youngest may be read only. The system may further include an overlay table which identifies those keys within the mapping table that are invalid.
Abstract:
A system and method for efficiently performing user storage virtualization for data stored in a storage system including a plurality of solid-state storage devices. A data storage subsystem supports multiple mapping tables. Records within a mapping table are arranged in multiple levels. Each level stores pairs of a key value and a pointer value. The levels are sorted by time. New records are inserted in a created newest (youngest) level. No edits are performed in-place. All levels other than the youngest may be read only. The system may further include an overlay table which identifies those keys within the mapping table that are invalid.
Abstract:
A storage system is provided. The storage system includes a plurality of storage units, each of the plurality of storage units having storage memory for user data and a plurality of storage nodes, each of the plurality of storage nodes configured to have ownership of a portion of the user data. The storage system includes a first pathway, coupling the plurality of storage units such that each of the plurality of storage units can communicate with at least one other of the plurality of storage units via the first pathway without assistance from the plurality of storage nodes.
Abstract:
A system, method, and computer-readable storage medium for mapping block numbers within a region to physical locations within a storage system. Block numbers are mapped within a region according to a fractal-based space-filling curve. If the region is not a 2k by 2k square, then the region is broken up into one or more 2k by 2k squares. Any remaining sub-region is centered within a 2k by 2k square, the 2k by 2k square is numbered using a fractal-based space-filling curve, and then the sub-region is renumbered by assigning numbers based on the order of the original block numbers of the sub-region.
Abstract:
A system and method for efficiently storing data in a storage system. A data storage subsystem includes multiple data storage locations on multiple storage devices in addition to at least one mapping table. A data storage controller determines whether data to store in the storage subsystem has one or more patterns of data intermingled with non-pattern data within an allocated block. Rather than store the one or more pattern on the storage devices, the controller stores information in a header on the storage devices. The information includes at least an offset for the first instance of a pattern, a pattern length, and an identification of the pattern. The data may be reconstructed for a corresponding read request from the information stored in the header.