Abstract:
Disclosed are systems, methods and devices for application of determining position information for mobile devices. In specific implementations, measurement of a signal travel time and a signal's strength may be combined to characterize a transmission power of the signal's transmitter. The characterized transmission power may be applied to affect expected signal strength signature values for use of the signal's transmitter may be updated in order to enhance a location based service where location may be effected by accuracy of a transmitter's power.
Abstract:
Techniques are provided for providing a processing delay estimate of an access point, or turnaround calibration function (TCF), associated with round trip time (RTT) measurements. Mobile devices, access points, and/or other systems can utilize these techniques to derive processing delay from the RTT measurements. Crowdsourcing can also be used to help increase the accuracy of the processing delay estimate, which can be propagated to multiple devices.
Abstract:
Techniques are discussed herein for providing notification messages to a user are provided. An example method of sending an alert message includes receiving a notification from an alerting device, determining a notification recipient associated with the alerting device, determining a location and one or more notification preferences associated with the notification recipient, determining a notification device based on the location and the one or more notification preferences, and sending the alert message to the notification device, wherein the alert message includes an indication of at least one notification preference and the alerting device.
Abstract:
A method of registering a target device includes: receiving a first indication to initiate a registration; and determining a suggested registration location and/or or a suggested registration name. The method further includes: providing a second indication of at least one of the suggested registration location or the suggested registration name; providing a third indication requesting at least one of whether the suggested registration location is accepted or whether the suggested registration name is accepted; receiving a fourth indication indicating at least one of whether the suggested registration location is accepted or whether the suggested registration name is accepted; and registering the target device by storing target device information based on the fourth indication.
Abstract:
Techniques are provided which may be implemented using various methods and/or apparatuses in a mobile device to request a transport vehicle. Techniques are provided which may be implemented using various methods and/or apparatuses in a transport vehicle to respond to a request from a mobile device. Various embodiments include customer and transport authentication and security techniques. Various embodiments include location update techniques to enable a transport vehicle to navigate to a mobile device, even in areas of low position accuracy for traditional GNSS and terrestrial transceiver-based systems.
Abstract:
Disclosed is an apparatus and method for synchronization of sensing operations performed by a plurality of devices. The method may include collecting sensing capabilities of one or more connected devices that are communicably coupled with a central device. Each connected device may include one or more sensors, and the sensing capabilities may include at least sensor type and sensing interval for each sensor. The method may also include coordinating sensing operations performed by the central device and the one or more connected devices.
Abstract:
A method of using one or more radio-frequency signals includes: monitoring, with at least one radio-frequency (RF) receiver, one or more RF characteristics of one or more wireless RF signals from one or more RF devices in an environment; comparing the one or more RF characteristics to a reference RF profile for the environment; and initiating an action based on a difference between the one or more RF characteristics and the reference RF profile determined by the comparing.
Abstract:
The disclosure relates to position sensors. An apparatus in accordance with aspects of the disclosure, the apparatus includes a wireless transceiver configured to transmit and receive wireless signals, a SPS receiver configured to receive SPS signals, memory, and a processor. The processor/memory may be configured to generate SPS-based location data using the SPS receiver in response to receipt of a MDT measurement request, determine whether the SPS-based location data is accurate or not accurate, in response to a determination that the SPS-based location data is not accurate, generate network-based location data using the wireless transceiver and include the network-based location data in an MDT report, in response to a determination that the SPS-based location data is accurate, include the SPS-based location data in the MDT report, and transmit the MDT report, wherein the MDT report includes one or both of the SPS-based location data and/or the network-based location data.
Abstract:
Method, mobile device, computer program product, and apparatus for performing Fine Grain Position Data Collection is described. In one aspect a mobile device performs measurement batching of data, for example positioning and AP measurement data. In some aspects, the mobile device processes positioning and AP measurement data in response to a batch trigger. The mobile device may send the processed measurement batch to a server for analysis or processing. A batch trigger may include receiving a positioning fix with high confidence such that the mobile device may backfilter or otherwise correct mobile sensor based positioning data associated with AP measurements. The server may interpret the data from the measurement batches identified from a number of different mobile devices to calculate position of APs within an environment.
Abstract:
In one aspect, a method includes performing, by a wireless station, a fine timing measurement (FTM) procedure with each of one or more FTM-enabled access points (APs) to obtain a respective one or more FTM-based round-trip time (RTT) measurement between the wireless station and each of the one or more FTM-enabled APs. The method also includes performing a non-FTM procedure with each of one or more non-FTM-enabled APs to obtain a respective one or more non-FTM-based RTT measurement. The wireless station then calculates a position of the wireless device based on both the one or more FTM-based RTT measurements and the one or more non-FTM-based RTT measurements.