摘要:
The invention relates to an exhaust turbocharger (1) of an internal combustion engine (2) having a compressor (3), and having a turbine (4), which comprises a turbine housing (5), wherein the turbine housing (5) comprises an evaporator (6), to which heat deriving from the exhaust gases of the internal combustion engine (2) can be admitted for the evaporation of a working fluid, and wherein the evaporator (6) is flow-connected to a line arrangement (7), in which a steam turbine (8) and downstream of that a condenser (9) are arranged, viewed in the direction of flow (S) of the working fluid.
摘要:
Another embodiment of the invention includes a method of controlling a turbocharger to achieve at least one of: produce air in excess of that required to operate a combustion engine at a specific power demand; control the flow of gas through the turbine; or control the turbine speed independent of boost pressure required to avoid specific speeds.
摘要:
One embodiment of the invention may include a method of controlling exhaust gas recirculation (EGR) in a turbocharged compression-ignition engine system including a high pressure (HP) EGR path and a low pressure (LP) EGR path. The method may include determining a target total EGR fraction for compliance with exhaust emissions criteria, and determining a target HP/LP EGR ratio to optimize other engine system criteria within the constraints of the determined target total EGR fraction. The determining of the target HP/LP EGR ratio may include using at least engine speed and load as input to a base model to output a base EGR value, using at least one other engine system parameter as input to at least one adjustment model to output at least one EGR adjustment value, and adjusting the base EGR value with the at least one EGR adjustment value to generate at least one adjusted EGR value.
摘要:
A method including selectively injecting non-cooled exhaust gas into a primary air intake conduit at a first location; selectively injecting cooled exhaust gas into the primary air intake conduit at a second location; and wherein the second location is downstream from the first location with respect to the direction of gas flow in the primary air intake conduit.
摘要:
A method of controlling exhaust gas recirculation (EGR) in a turbocharged compression-ignition engine system including an engine, an induction subsystem in upstream communication with the engine, an exhaust subsystem in downstream communication with the engine, a high pressure EGR path between the exhaust and induction subsystems upstream of a turbocharger turbine and downstream of a turbocharger compressor, and a low pressure EGR path between the exhaust and induction subsystems downstream of the turbocharger turbine and upstream of the turbocharger compressor. A target total EGR fraction for compliance with exhaust emissions criteria is determined, then a target HP/LP EGR ratio is determined to optimize other engine system criteria within the constraints of the determined target total EGR fraction.
摘要:
A turbine housing of the exhaust turbocharger, having an inlet, which is adjoined by a spiral; having an outlet; and having a coolant arrangement; wherein the coolant arrangement has a plurality of coolant ducts, which branch off from an inlet duct section and open into an outlet duct section.
摘要:
The process of active DPF regeneration requires that the DPF be brought to regeneration temperatures in excess of 550° C. to 600° C. for a period of time sufficient to accomplish soot burnoff in the DPF. Similarly, during cold start up it is desirable to bring the catalyst to light off temperature as soon as possible. The large thermal inertia of one or more turbochargers delays the exhaust gas at the DPF from reaching critical temperature quickly. The incorporation of a low thermal inertia, insulated, turbocharger bypass duct avoids thermal energy loss from exhaust gas to the turbine housing and shortens the time for the DPF to reach critical temperature for active DPF regeneration, or in the case of a catalytic converter, shortens time for catalyst to reach light off temperature.
摘要:
The process of active DPF regeneration requires that the DPF be brought to regeneration temperatures in excess of 550° C. to 600° C. for a period of time sufficient to accomplish soot burnoff in the DPF. Similarly, during cold start up it is desirable to bring the catalyst to light off temperature as soon as possible. The large thermal inertia of one or more turbochargers delays the exhaust gas at the DPF from reaching critical temperature quickly. The incorporation of a low thermal inertia, insulated, turbocharger bypass duct avoids thermal energy loss from exhaust gas to the turbine housing and shortens the time for the DPF to reach critical temperature for active DPF regeneration, or in the case of a catalytic converter, shortens time for catalyst to reach light off temperature.
摘要:
One embodiment includes a housing (12) and a valve (10) to be used in an internal combustion engine exhaust breathing system (14). The housing (12) may define one or more inlet passages that receive fluid-flow, and may also define one or more outlet passages that deliver fluid-flow. The valve (10) regulates fluid-flow through the housing (12) and between the passages.
摘要:
A method of controlling exhaust gas recirculation (EGR) in a turbocharged compression-ignition engine system including an engine, an induction subsystem in upstream communication with the engine, an exhaust subsystem in downstream communication with the engine, a high pressure EGR path between the exhaust and induction subsystems upstream of a turbocharger turbine and downstream of a turbocharger compressor, and a low pressure EGR path between the exhaust and induction subsystems downstream of the turbocharger turbine and upstream of the turbocharger compressor. A target total EGR fraction for compliance with exhaust emissions criteria is determined, then a target HP/LP EGR ratio is determined to optimize other engine system criteria within the constraints of the determined target total EGR fraction.