Abstract:
The present invention proposes a hybrid spatial multiplexing (SM) and a space division multiple access (SDMA) technique in a frequency division duplex (FDD) massive multiple-input multiple output (MIMO) system using a two-dimensional planar array antenna, which effectively transmits a channel state information reference signal (CSI-RS) for estimating a downlink two-dimensional space channel using only a limited amount of downlink radio resources, and optimally selects and performs the SM and SDMA techniques in a two-dimensional space channel. To this end, the present invention proposes a technique which defines space resource blocks (SRB) by grouping space elements (SE) having a high spatial correlation between downlink channels in the horizontal dimension and corresponding SEs thereof in the vertical dimension, and transmits CSI-RSs for estimating channels in vertical dimension SEs corresponding to one selected horizontal SE in each SRB every transmit time interval (TTI). The present invention proposes a technique wherein user equipment (UE) estimates the spatial correlation between channels of different horizontal dimension SEs belonging to the same SRB received in different TTIs and the spatial correlation between channels of horizontal dimension SEs belonging to different SRBs received in the same TTI, and feeds information for changing the size of SRB of the corresponding UE to an optimal size back to eNodeB. The present invention proposes a technique wherein the UE estimates downlink channels through CSI-RSs transmitted from each SRB, and each UE feeds an index of a preferred SRB, a rank of the corresponding SRB in the vertical dimension, and channel quality information (CQI) back to eNodeB. When each UE determines the rank, it is possible to transmit the ranks to the fullest extent in the vertical dimension and only a single rank from each SRB in the horizontal dimension.
Abstract:
A method for a dual connectivity-enabled terminal which receives downlink data from at least one of a macro and a pico base station to transmit uplink control information corresponding to downlink data is provided. The method includes receiving the downlink data from a base station, determining whether the terminal is configured with a secondary cell group (SCG), determining, if the terminal is configured with the SCG, a size of a soft buffer per code block per cell based on a number of configured serving cells of the terminal, and storing the received downlink data in the soft buffer based on the size of the soft buffer per code block per cell, wherein the configured serving cells are included in a master cell group (MCG) and the SCG.
Abstract:
A communication method and an apparatus for transferring interference-related control information in order to enhance reception performance of a user terminal that receives downlink signals in a cellular mobile communication system based on a long term evolution-advanced (LTE-A) system are provided. The method includes receiving transmission parameters of interference, which include information on a resource by which interference data is not transmitted, performing blind detection using the information on a resource by which interference data is not transmitted, performing error correction encoding using the transmission parameters of the interference and the blind detection result, and decoding the received data.
Abstract:
An apparatus and a method of measuring a reference signal for efficient downlink transmission in a mobile communication system are provided. The system includes plural base stations, each having a plurality of antennas distributed in the service area thereof based on a Distributed Antenna System (DAS). A method for a base station to notify a terminal of reference signal measurement information in a mobile communication system comprises determining whether the terminal is in a Rank Indicator/Precoding Matrix Indicator (RI/PMI) disabled mode, selecting, when the terminal is in the RI/PMI disabled mode, the reference signal to be measured by the terminal between a Cell-specific Reference Signal (CRS) and a Channel Status Information Reference Signal (CSI-RS), notifying the terminal of the reference signal measurement information with the selection result, and receiving channel information generated based on the reference signal measurement information from the terminal.
Abstract translation:提供了一种在移动通信系统中测量用于有效下行链路传输的参考信号的装置和方法。 该系统包括多个基站,每个基站具有基于分布式天线系统(DAS)分布在其服务区域中的多个天线。 一种用于基站在移动通信系统中通知终端参考信号测量信息的方法,包括:确定终端是否处于秩指示/预编码矩阵指示符(RI / PMI)禁用模式,当终端处于 RI / PMI禁用模式,由小区特定参考信号(CRS)和信道状态信息参考信号(CSI-RS)之间的终端要测量的参考信号,通过选择通知终端参考信号测量信息 结果以及基于来自终端的参考信号测量信息生成的信道信息。
Abstract:
A control channel transmission/reception method and an apparatus for transmitting/receiving control channels using a resource allocation scheme applicable regardless of reference signal transmission or whether the reference signal is transmitted in distributed transmission mode or localized transmission mode are provided. The control channel transmission method includes mapping a Demodulation Reference Signal (DMRS) to Resource Elements (REs) of a Resource Block (RB) for transmitting a control channel, mapping the control channel to the REs numbered with numbers of predetermined number of Resource Element Groups (REGs) in a frequency-first ascending order cyclically, with the exception of the REs to which the DMRS is mapped, and transmitting the DMRS and the control channel.
Abstract:
A method for transmitting a physical channel in a Time Division Duplex (TDD) communication system capable of carrier aggregation is provided for supporting aggregation of carriers having different TDD configurations. The communication method of a terminal in a TDD radio communication system accomplishing broadband through carrier aggregation of primary and secondary cells, of which aggregated carriers have different TDD Uplink-Downlink (UL-DL) configurations, includes receiving Physical Downlink Shared Channel (PDSCH) through the secondary cell, and transmitting acknowledgement information corresponding to the PDSCH to a base station, where acknowledgement information is transmitted on a Physical Uplink Control CHannel (PUCCH) of the primary cell.
Abstract:
A method and an apparatus for transmitting and receiving signals modulated with 256 Quadrature Amplitude Modulation (256QAM) for use in a mobile communication system are provided. The method includes receiving a first signal from a terminal, determining a modulation application criterion for data communication with the terminal based on the first signal, receiving a second signal including an index from the terminal, and determining a modulation scheme to be applied to at least one of the signals communicating with the terminal based on the modulation application criterion and the received index.
Abstract:
A method for allowing terminals to exchange discovery or synchronization signals to determine their presences among each other within a service area of a base station is provided. The method includes collecting multicast identifiers of another terminal for use in multicast communication, receiving a multicast control channel for Device-to-Device (D2D) multicast communication, performing Cyclic Redundancy Check (CRC) on the received multicast control channel using the collected multicast identifiers, and receiving, when the CRC is successful, the D2D multicast according to the multicast control channel. The D2D communication method and apparatus is advantageous in that the D2D terminal is capable of transmitting the discovery or synchronization signal to discover the neighbor terminals without disturbing downlink or uplink communication between the base station and the terminal, wherein the base station configures the resource for D2D communication so as to support D2D communication without an inter-device interference.
Abstract:
A method for transmitting control information by a base station in a wireless communication system is provided. The method includes determining a precoder to be applied to a resource and a Demodulation Reference Signal (DMRS) port, the resource being used to transmit the control information, and the DMRS port corresponding to the resource and being used to transmit a DMRS, precoding the resource and the DMRS port by using the determined precoder, and transmitting the control information and the DMRS to a user equipment.
Abstract:
A method and an apparatus for transmitting/receiving channel state information for use in multi-antenna system are provided. A signal communication method of a base station having a plurality of antennas in a wireless communication system includes determining antenna ports of first and second directions based on directions of the plurality of antennas, allocating channel measurement resources for the respective antenna ports to a terminal, transmitting a feedback configuration to the terminal according to the channel measurement resources, and receiving feedback information from the terminal based on the channel measurement resource and the feedback configuration. The signal transmission/reception method and apparatus are advantageous in transmitting/receiving channel state information efficiently in the system using a plurality of antennas.