摘要:
The present invention discloses a new type of high performance mixed matrix membranes (MMMs) and methods for making and using the same. The MMMs comprise a continuous polymer matrix and at least two types of molecular sieves dispersed therein. The continuous polymer matrix in the MMM contains at least one type of polymer. The MMM in the form of a dense film, asymmetric flat sheet membrane or otherwise prepared exhibits simultaneously improved selectivity and permeability for gas separations compared to polymer membranes made from a continuous polymer matrix without any molecular sieves or with only one type of molecular sieve. MMMs of the present invention are suitable for a wide range of gas, vapor, and liquid separations such as alcohol/water, CO2/CH4, H2/CH4, O2/N2, CO2/N2, olefin/paraffin, iso/normal paraffins, and other light gases separations.
摘要:
The present invention discloses high performance polybenzoxazole membranes prepared from aromatic poly(o-hydroxy amide) membranes by thermal cyclization and a method for using these membranes. The polybenzoxazole membranes were prepared by thermal treating aromatic poly(o-hydroxy amide) membranes in a temperature range of 200° to 550° C. under inert atmosphere. The aromatic poly(o-hydroxy amide) membranes used for making the polybenzoxazole membranes were prepared from aromatic poly(o-hydroxy amide) polymers comprising pendent phenolic hydroxyl groups ortho to the amide nitrogen in the polymer backbone. In some embodiments of the invention, the polybenzoxazole membranes may be subjected to an additional crosslinking step to increase the selectivity of the membranes. These polybenzoxazole membranes showed significantly improved permeability for gas separations compared to the precursor aromatic poly(o-hydroxy amide) membranes and are not only suitable for a variety of liquid, gas, and vapor separations, but also can be used in catalysis and fuel cells.
摘要:
The present invention discloses microporous aluminophosphate (AlPO4) molecular sieve membranes and methods for making and using the same. The microporous AlPO4 molecular sieve membranes, particularly small pore microporous AlPO-14 and AlPO-18 molecular sieve membranes, are prepared by three different methods, including in-situ crystallization of a layer of AlPO4 molecular sieve crystals on a porous membrane support, coating a layer of polymer-bound AlPO4 molecular sieve crystals on a porous membrane support, and a seeding method by in-situ crystallization of a continuous second layer of AlPO4 molecular sieve crystals on a seed layer of AlPO4 molecular sieve crystals supported on a porous membrane support. The microporous AlPO4 molecular sieve membranes have superior thermal and chemical stability, good erosion resistance, high CO2 plasticization resistance, and significantly improved selectivity over polymer membranes for gas and liquid separations, including carbon dioxide/methane (CO2/CH4), carbon dioxide/nitrogen (CO2/N2), and hydrogen/methane (H2/CH4) separations.
摘要:
The present invention discloses a novel method of making high performance mixed matrix membranes (MMMs) using stabilized concentrated suspensions of solvents, uniformly dispersed polymer stabilized molecular sieves, and at least two different types of polymers as the continuous blend polymer matrix. MMMs as dense films or asymmetric flat sheet or hollow fiber membranes fabricated by the method described in the current invention exhibit significantly enhanced permeation performance for separations over the polymer membranes made from the continuous blend polymer matrix. MMMs of the present invention are suitable for a wide range of gas, vapor, and liquid separations such as alcohol/water, CO2/CH4, H2/CH4, O2/N2, CO2/N2, olefin/paraffin, iso/normal paraffins, and other light gases separations.
摘要翻译:本发明公开了使用稳定的溶剂浓缩悬浮液,均匀分散的聚合物稳定化分子筛和至少两种不同类型的聚合物作为连续共混聚合物基质制备高性能混合基质膜(MMM)的新方法。 通过本发明所述方法制造的致密膜或非对称平板或中空纤维膜的MMM显示出从由连续共混聚合物基质制成的聚合物膜上的分离显着增强的渗透性能。 本发明的MMM适用于各种气体,蒸汽和液体分离,例如醇/水,CO 2 / CH 4,H 2 / CH 4,O 2 / N 2,CO 2 / N 2,烯烃/石蜡,异/正链烷烃, 和其他轻质气体分离。
摘要:
The present invention is for high performance UV-cross-linked membranes from polymers of intrinsic microporosity (PIMs) and the use of such membranes for separations. More specifically, the invention involves the methods of making UV-cross-linked membranes from PIMs. These membranes were prepared by cross-linking the UV-cross-linkable membranes from PIMs by exposure to UV-radiation. Pure gas permeation test results demonstrate that the UV-cross-linked membranes from PIMs exhibit CO2/CH4 performance well above the Robeson's polymer upper bound trade-off curve for CO2/CH4 separation. They have more than doubled selectivity for CO2/CH4 and extremely high permeability of CO2 compared to the original UV-cross-linkable membranes from PIMs. These membranes also show excellent separation performance for CO2/N2, H2/CH4, O2/N2, and propylene/propane separations. These high performance UV-cross-linked membranes are very useful for gas and liquid separations such as CO2/CH4, CO2/N2, H2/CH4, O2/N2, olefin/paraffin, deep desulfurization of gasoline and diesel fuels, and ethanol/water separations.
摘要:
The present invention discloses high performance polybenzoxazole membranes prepared from aromatic poly(o-hydroxy amide) membranes by thermal cyclization and a method for using these membranes. The polybenzoxazole membranes were prepared by thermal treating aromatic poly(o-hydroxy amide) membranes in a temperature range of 200° to 550° C. under inert atmosphere. The aromatic poly(o-hydroxy amide) membranes used for making the polybenzoxazole membranes were prepared from aromatic poly(o-hydroxy amide) polymers comprising pendent phenolic hydroxyl groups ortho to the amide nitrogen in the polymer backbone. In some embodiments of the invention, the polybenzoxazole membranes may be subjected to an additional crosslinking step to increase the selectivity of the membranes. These polybenzoxazole membranes showed significantly improved permeability for gas separations compared to the precursor aromatic poly(o-hydroxy amide) membranes and are not only suitable for a variety of liquid, gas, and vapor separations, but also can be used in catalysis and fuel cells.
摘要:
This invention involves a composition, a method of making, and an application of high plasticization-resistant chemically cross-linked polymeric membranes such as cross-linked cellulose acetate (CA) membrane. These cross-linked polymeric membranes with covalently interpolymer-chain-connected rigid networks showed no decrease in CO2/CH4 ideal selectivity under 690 kPa (100 psig) pure CO2 pressure and also no CO2 plasticization up to 3447 kPa (500 psig) pure CO2 pressure. By using the method of chemical cross-linking as described in this invention, the separation characteristics of the polymeric membranes can be decisively improved. These new cross-linked polymeric membranes can be used not only for gas separations such as CO2/CH4 and CO2/N2 separations, O2/N2 separation, olefin/paraffin separations (e.g. propylene/propane separation), iso/normal paraffins separations, but also for liquid separations such as pervaporation and desalination.
摘要:
The present invention discloses mixed matrix membranes (MMMs) containing polymer-functionalized low acidity, ultra low silica-to-alumina ratio, nano-sized SAPO-34 small pore molecular sieves and a continuous polymer matrix and methods for making and using these membranes. The surface functionalization of these molecular sieves provides a desired interfacial adhesion between SAPO-34 nano-particles and the continuous polymer matrix, which results in either no macrovoids or voids of less than 5 angstroms at the interface of the continuous polymer matrix and SAPO-34 in the MMMs. These MMMs, in the form of symmetric dense film, asymmetric flat sheet membrane, or asymmetric hollow fiber membranes, have good flexibility and high mechanical strength, and exhibit remarkably enhanced CO2 permeability (or CO2 permeance) and maintained CO2/CH4 selectivity over the continuous polymer matrices for CO2/CH4 separation. The MMMs of the present invention are suitable for a variety of liquid, gas, and vapor.
摘要:
The present invention discloses polymer functionalized molecular sieve/polymer mixed matrix membranes (MMMs) with either no macrovoids or voids of less than several Angstroms at the interface of the polymer matrix and the molecular sieves by incorporating polymer functionalized molecular sieves into a continuous polymer matrix. The MMMs exhibit significantly enhanced selectivity and/or permeability over the polymer membranes made from the corresponding continuous polymer matrices for separations. The MMMs are suitable for a variety of liquid, gas, and vapor separations such as deep desulfurization of gasoline and diesel fuels, ethanol/water separations, pervaporation dehydration of aqueous/organic mixtures, CO2/CH4, CO2/N2, H2/CH4, O2/N2, olefin/paraffin, iso/normal paraffins separations, and other light gas mixture separations.
摘要:
The present invention discloses polymer functionalized molecular sieve/polymer mixed matrix membranes (MMMs) with either no macrovoids or voids of less than several Angstroms at the interface of the polymer matrix and the molecular sieves by incorporating polyethersulfone (PES) or cellulose triacetate (CTA) functionalized molecular sieves into a continuous polyimide or cellulose acetate (CA) polymer matrix. The MMMs, in the form of symmetric dense film, asymmetric flat sheet membrane, or asymmetric hollow fiber have good flexibility and high mechanical strength, and exhibit significantly enhanced selectivity and/or permeability over the polymer membranes made from the corresponding continuous polymer matrices for carbon dioxide/methane (CO2/CH4) and hydrogen/methane (H2/CH4) separations. The MMMs are suitable for a variety of liquid, gas, and vapor separations such as deep desulfurization of gasoline and diesel fuels, ethanol/water separations, pervaporation dehydration of aqueous/organic mixtures, CO2/CH4, CO2/N2, H2/CH4, O2/N2, olefin/paraffin, iso/normal paraffins separations, and other light gas mixture separations.