摘要:
A display panel (110) includes a plurality of optical elements (OEL) each having a pair of electrodes and performing an optical operation according to current passing between the pair of electrodes, a current line (DL), a switch circuit (Tr2) that passes a write current (Ia) with a predetermined current value through the current line (DL) during a selection time (Tse) and stops passing current during a nonselection time (Tnse), and a current storage circuit (Tr1, Tr3, Cs, Cp) that stores current data according to the current value of the write current (Ia) passing through the current line (DL) during the selection time (Tse) and that supplies a drive current (Ib) having a current value, which is obtained by subtracting a predetermined offset current (Ioff) from the current value of the stored write current (Ia), to the optical elements (OEL) during the nonselection time (Tnse).
摘要:
A semiconductor device is disclosed that reduces the reverse leakage current caused by reverse bias voltage application and reduces the on-voltage of the IGBT. A two-way switching device using the semiconductor devices is provided, and a method of manufacturing the semiconductor device is disclosed. The reverse blocking IGBT reduces the reverse leakage current and the on-voltage by bringing portions of an n−-type drift region 1 that extend between p-type base regions and an emitter electrode into Schottky contact to form Schottky junctions.
摘要:
A semiconductor device and method of manufacturing the same includes an n−-single crystal silicon substrate, with an oxide film selectively formed thereon. On the oxide film, gate polysilicon is formed. The surface of the gate polysilicon is covered with a gate oxide film whose surface is covered with a cathode film doped in an n-type with an impurity concentration higher than that of the substrate as an n−-drift layer. In the cathode film, a section in contact with the substrate becomes an n+-buffer region with a high impurity concentration, next to which a p-base region is formed. Next to the p-base region, an n+-source region is formed. On the cathode film, an interlayer insulator film is selectively formed on which an emitter electrode is formed. A semiconductor device such as an IGBT is obtained with a high rate of acceptable products, an excellent on-voltage to turn-off loss tradeoff and an excellent on-voltage to breakdown voltage tradeoff.
摘要:
A semiconductor device is provided which can be manufactured even by using an inexpensive FZ wafer in a wafer process and still has a sharp inclination of a high impurity concentration in a high impurity concentration layer at the outermost portion of the reverse side and at the boundary between the high impurity concentration and a low impurity concentration drift layer, thus achieving both low cost and a high performance. A method for manufacturing a semiconductor device is also provided which can form a high impurity concentration buffer layer and a high impurity concentration layer at the outermost portion of the reverse side without any significant trouble, even after the formation of an active region and an electrode thereof at the right side, to thereby achieve both low cost and high performance.
摘要:
A parallel p-n layer (20) is provided as a drift layer between an active portion and an n+ drain region (11). The parallel p-n layer (20) is formed by an n-type region (1) and a p-type region (2) being repeatedly alternately joined. An n-type high concentration region (21) is provided on a first main surface side of the n-type region (1). The n-type high concentration region (21) has an impurity concentration higher than that of an n-type low concentration region (22) provided on a second main surface side of the n-type region (1). The n-type high concentration region (21) has an impurity concentration 1.2 times or more, 3 times or less, preferably 1.5 times or more, 2.5 times or less, greater than that of the n-type low concentration region (22). Also, the n-type high concentration region (21) has one-third or less, preferably one-eighth or more, one-fourth or less, of the thickness of a region of the n-type region (1) adjacent to the p-type region (2).
摘要:
A display device includes a display panel having a plurality of signal lines and scanning lines with a plurality of display pixels containing current control type light emitting devices; a scan driver circuit which applies a scanning signal to each of the scanning lines and sets the display pixels connected to the scanning lines in a selective state; a signal driver circuit which generates gradation current based on a display data luminosity gradation component and supplies to the display pixels set in the selective state; a precharge circuit which applies a precharge voltage to each signal line and sets a capacity component attached to each of the scanning lines in a predetermined charged state; and an operation control circuit which controls setting of the light emitting devices in a non-light emitting state when the capacity component is set in a predetermined charged state.
摘要:
A data acquisition circuit sets one of the potential value at one end of a signal line and the value of a current flown thereto when one end of a current path of a drive device is connected to a light emitting device with the other end thereof set to a potential value where no current flows to the light emitting device. Then the circuit causes current to flow via the current path and the signal line and acquires one of the value of the current flown to the signal line and the potential value at the one end of the signal line according to the set value. A correction operation circuit acquires a threshold voltage and a current amplification factor of the drive device based on one of the current and potential values thus acquired as well as on one of the potential and current values thus set.
摘要:
A semiconductor device including an n-type semiconductor substrate, a p-type channel region and a junction layer provided between the n-type semiconductor substrate and the p-type channel region is disclosed. The junction layer has n-type drift regions and p-type partition regions alternately arranged in the direction in parallel with the principal surface of the n-type semiconductor substrate. The p-type partition region forming the junction layer is made to have a higher impurity concentration than the n-type drift region. This enables the semiconductor device to have an enhanced breakdown voltage and, at the same time, have a reduced on-resistance.
摘要:
A manufacturing method for manufacturing a super-junction semiconductor device forms an oxide film and a nitride film on an n-type epitaxial layer exhibiting high resistance on an n-type semiconductor substrate exhibiting low resistance. The portion of the nitride film in the scribe region is left unremoved by patterning and an alignment marker is opened through the nitride film. After opening a trench pattern in the oxide film, trenches having a high aspect ratio are formed. The portion of the oxide film outside the scribe region is removed and a p-type epitaxial layer is buried in the trenches. The overgrown p-type epitaxial layer is polished with reference to the nitride film, the polished surface is finished by etching, and the n-type epitaxial layer surface is exposed.
摘要:
A thin semiconductor wafer, on which a top surface structure and a bottom surface structure that form a semiconductor chip are formed, is affixed to a supporting substrate by a double-sided adhesive tape. Then, on the thin semiconductor wafer, a trench to become a scribing line is formed by wet anisotropic etching with a crystal face exposed so as to form a side wall of the trench. On the side wall of the trench with the crystal face thus exposed, an isolation layer for holding a reverse breakdown voltage is formed by ion implantation and low temperature annealing or laser annealing so as to be extended to the top surface side while being in contact with a p collector region as a bottom surface diffused layer. Then, laser dicing is carried out to neatly dice a collector electrode, formed on the p collector region, together with the p collector region, without presenting any excessive portions and any insufficient portions under the isolation layer. Thereafter, the double-sided adhesive tape is removed from the collector electrode to produce semiconductor chips. A highly reliable reverse-blocking semiconductor device can thus be formed at a low cost.