Abstract:
Various embodiments of the present invention are directed to methods of forming single-crystal metal-silicide nanowires and resulting nanowire structures. In one embodiment of the present invention, a method of fabricating nanowires is disclosed. In the method, a number of nanowire-precursor members are formed. Each of the nanowire-precursor members includes a substantially single-crystal silicon region and a polycrystalline- metallic region. The substantially single-crystal silicon region and the polycrystalline-metallic region of each of the nanowire-precursor members is reacted to form corresponding substantially single-crystal metal-silicide nanowires. In another embodiment of the present invention, a nanowire structure is disclosed. The nanowire structure includes a substrate having an electrically insulating layer. A number of substantially single-crystal metal-silicide nanowires are positioned on the electrically insulating layer.
Abstract:
A method of forming a plurality of NERS-active structures is disclosed. Particularly, a substrate having a surface and a liquid including nanoparticles is deposited on at least a portion of the surface of the substrate. At least one electric field may be generated proximate to the surface and at least a portion of the nanoparticles may be arranged via the electric field. A system includes at least two electrodes configured for producing at least one electric field for substantially arranging nanoparticles substantially according to a selected pattern. A NERS-active structure includes a substrate and a plurality of features located at predetermined positions on a surface of the substrate and at least one NERS-active nanoparticle at least partially embedded therein.
Abstract:
An apparatus for sensing at least one property of a fluid is described. A first photonic crystal structure and a second photonic crystal structure are defined in a dielectric slab. The first and second photonic crystal structures comprise differently patterned arrays of channels extending through the dielectric slab. The apparatus further comprises a fluid introduction device configured to introduce a common volume of the fluid into the channels of the first and second photonic crystal structures. The at least one property of the fluid can be sensed by measuring the propagation of radiation through the first and second photonic crystal structures.
Abstract:
A Raman spectroscopy system is disclosed which includes a sub-wavelength resonant grating filter and a photodiode with integrated sub-wavelength resonant grating filter are disclosed. The resonant grating filter comprises an array of diffraction elements having a periodic spacing that is less than the wavelength of radiation to be filtered and which are formed over a waveguide layer. The filter, which can reject a specific wavelength of radiation, can be placed between a Raman sample and a Raman detector in order to filter radiation that is elastically scattered from the sample while transmitting other wavelengths. The wavelength rejected by the filter can be selected by tilting the filter with respect to the radiation incident upon the filter.
Abstract:
A NERS-active structure includes a deformable, active nanoparticle support structure for supporting a first nanoparticle and a second nanoparticle that is disposed proximate the first nanoparticle. The nanoparticles each comprise a NERS-active material. The deformable, active nanoparticle support structure is configured to vary the distance between the first nanoparticle and the second nanoparticle while performing NERS. Various active nanoparticle support structures are disclosed. A NERS system includes such a NERS-active structure, a radiation source for generating radiation scatterable by an analyte located proximate the NERS-active structure, and a radiation detector for detecting Raman scattered radiation scattered by the analyte. A method for performing NERS includes providing such a NERS-active structure, providing an analyte at a location proximate the NERS-active structure, irradiating the NERS-active structure and the analyte with radiation, varying the distance between the nanoparticles, and detecting Raman scattered radiation scattered by the analyte.
Abstract:
Devices, systems, and methods for enhancing Raman spectroscopy and hyper-Raman are disclosed. A molecular analysis device for performing Raman spectroscopy comprises a substrate and a laser source disposed on the substrate. The laser source may be configured for emanating a laser radiation, which may irradiate an analyte disposed on a Raman enhancement structure. The Raman enhancement structure may be disposed in a waveguide. The molecular analysis device also includes a wavelength demultiplexer and radiation sensors disposed on the substrate and configured for receiving a Raman scattered radiation, which may be generated by the irradiation of the analyte and Raman enhancement structure.
Abstract:
Devices and methods for detecting the constituent parts of biological polymers are disclosed. A molecular analysis device includes a molecule sensor and a molecule guide. The molecule sensor comprises a nanostructure, which is configured for producing a nanostructure-enhanced Raman scattered radiation when an excitation radiation irradiates at least a portion of a molecule disposed near the NERS structure.
Abstract:
Integrated radiation source/amplifying structures for use in surface enhanced Raman spectroscopy (SERS) and hyper-SERS are disclosed. The structures include a radiation source integrated with a SERS-active structure that is provided within a resonant cavity. SERS and hyper-SERS systems employing the integrated radiation source/amplifying structures are disclosed. Methods of performing SERS and hyper-SERS are also disclosed.
Abstract:
A SERS-active structure is disclosed that includes a substrate and at least one nanowire disposed on the substrate. The at least one nanowire includes a core including a first material and a coating including a SERS-active material. A SERS system is also disclosed that includes a SERS-active structure. Also disclosed are methods for forming a SERS-active structure and methods for performing SERS with SERS-active structures.
Abstract:
An apparatus for performing surface enhanced Raman spectroscopy (SERS) includes a substrate and a plurality of nano-pillars, each of the plurality of nano-pillars having a first end attached to the substrate, a second end located distally from the substrate, and a body portion extending between the first end and the second end, in which the plurality of nano-pillars are arranged in an array on the substrate, and in which each of the plurality of nano-pillars is formed of a polymer material that is functionalized to expand in the presence of a fluid to cause gaps between the plurality of nano-pillars to shrink when the fluid is supplied onto the nano-pillars.