摘要:
To provide a technique for manufacturing a high-performance display device by employing a plastic substrate. A peeling layer is formed on an element-forming substrate, and a semiconductor element and a luminous element are further formed thereon. Then, a fixed substrate (130) is bonded on the luminous element by using a first adhesive (129). The entire substrate in this state is exposed in a gas containing halogen fluoride to thereby remove the peeling layer and separate the element-forming substrate. Thereafter, a bonding substrate (132) that comprises a plastic substrate is bonded in place of the separated element-forming substrate.
摘要:
A technique for manufacturing TFTs having little dispersion in their electrical characteristics is provided. Contamination of a semiconductor film is reduced by performing oxidation processing having an organic matter removing effect, forming a clean oxide film, after removing a natural oxide film formed on a semiconductor film surface. TFTs having little dispersion in their electrical characteristics can be obtained by using the semiconductor film thus obtained in active layers of the TFTs, and the electrical properties can be improved. In addition, deterioration in productivity and throughput can be reduced to a minimum by using a semiconductor manufacturing apparatus of the present invention.
摘要:
A method of producing a semiconductor device which removes catalyst elements from a silicon-containing semiconductor film while maintaining the advantage of low temperature process is provided. The method comprises the steps of: forming an amorphous semiconductor film containing silicon on a glass substrate to crystallize it by using a catalyst element; selectively introducing into the amorphous semiconductor film an impurity belonging to Group 15 to form gettering regions and regions to be gettered; and causing the catalyst element in the silicon film to move to the gettering regions by heat treatment. Through the gettering process, the crystalline silicon film can be obtained in which the concentration of nickel contained therein is sufficiently reduced.
摘要:
A method of fabricating a driver circuit for use with a passive matrix or active matrix electrooptical display device such as a liquid crystal display. The driver circuit occupies less space than heretofore. A circuit (stick crystal) having a length substantially equal to the length of one side of the matrix of the display device is used as the driver circuit. The circuit is bonded to one substrate of the display device, and then the terminals of the circuit are connected with the terminals of the display device. Subsequently, the substrate of the driver circuit is removed. This makes the configuration of the circuit much simpler than the configuration of the circuit heretofore required by the TAB method or COG method, because conducting lines are not laid in a complex manner. The driver circuit can be formed on a large-area substrate such as a glass substrate. The display device can be formed on a lightweight material having a high shock resistance such as a plastic substrate. Hence, a display device having excellent portability can be obtained.
摘要:
There are provided a substrate of a semiconductor device and a fabrication method thereof which allow to suppress impurity from turning around from a glass or quartz substrate in fabrication steps of a TFT. An insulating film is deposited so as to surround the glass substrate by means of reduced pressure thermal CVD. It allows to suppress the impurity from infiltrating from the glass substrate to an active region of the TFT in the later process.
摘要:
Disclosed is a technique of improving the heat resistance of the aluminum gate electrode in bottom-gate-type TFT of which the active layer is made of a crystalline silicon film. A pattern of a laminate of a titanium film 102 and an aluminum film 103 is formed on a glass substrate 101. The pattern is to give a gate electrode 100. Then, the titanium film 102 is side-etched. Next, the layered substrate is heated to thereby intentionally form hillocks and whiskers-on the surface of the aluminum pattern 103. Next, the aluminum pattern 103 acting as an anode is subjected to anodic oxidation to form an oxide film 105 thereon. The anodic oxidation extends to the lower edge of the aluminum pattern 103, at which the titanium layer was side-etched. Next, a gate-insulating film 106 and an amorphous silicon film are formed. A mask is formed over the pattern, which is to give -the gate electrode, and then a nickel acetate solution is applied to the layered structure. Thus, nickel is kept in contact with the surface of the structure. Next, this is heated to induce crystal growth in the silicon film from the region contacted with nickel to the masked region. In the bottom-gate-type TFT thus produced, the active layer is made of a crystalline silicon film. In this process, since the anodic oxide film is formed as in FIG. 1(C), aluminum does neither melt to flow away nor diffuse away. Thus, the heat resistance of the aluminum electrode formed is improved.
摘要:
A liquid crystal display device; in the prior art has been high in its manufactural cost for the reason that TFTs have been fabricated using, at least, five photo-masks.
摘要:
An object of the present invention is to provide a TFT of new structure in which the gate electrode overlaps with the LDD region and a TFT of such structure in which the gate electrode does not overlap with the LDD region. The TFT is made from crystalline semiconductor film and is highly reliable. The TFT of crystalline semiconductor film has the gate electrode formed from a first gate electrode 113 and a second gate electrode in close contact with said first gate electrode and gate insulating film. The LDD is formed by ion doping using said first gate electrode as a mask, and the source-drain region is formed using said second gate electrode as a mask. After that the second gate electrode in the desired region is selectively removed. In this way it is possible to form LDD region which overlaps with the second gate electrode.
摘要:
There is provided a semiconductor device including a semiconductor circuit formed by semiconductor elements having an LDD structure which has high reproducibility, improves the stability of TFTs and provides high productivity and a method for manufacturing the same. In order to achieve the object, the design of a second mask is appropriately determined in accordance with requirements associated with the circuit configuration to make it possible to form a desired LDD region on both sides or one side of the channel formation region of a TFT.
摘要:
In forming a pair of impurity regions in an active layer, an intrinsic or substantially intrinsic region having a double-sided comb shape is also formed by using a proper mask. The intrinsic or substantially intrinsic region is composed of a portion that effectively functions as a channel forming region and portions in which a channel is not formed and which function as heat sinks. The heat dissipation effect is improved because the heat sinks are formed by the same material as the channel forming region.