摘要:
In a nonvolatile semiconductor storage device having a split-gate memory cell including a control gate electrode and a sidewall memory gate electrode and a single-gate memory cell including a single memory gate electrode on the same silicon substrate, the control gate electrode is formed in a first region via a control gate insulating film, the sidewall memory gate electrode is formed in the first region via a charge trapping film, and at the same time, a single memory gate electrode is formed in a second region via the charge trapping film. At this time, the sidewall memory gate electrode and the single memory gate electrode are formed in the same process, and the control gate electrode and the sidewall memory gate electrode are formed so as to be adjacently disposed to each other in a state of being electrically isolated from each other.
摘要:
Provided is a nonvolatile semiconductor memory device having a split gate structure, wherein a memory gate is formed over a convex shaped substrate and side surfaces of it is used as a channel. The nonvolatile semiconductor memory device according to the present invention is excellent in read current driving power even if a memory cell is scaled down.
摘要:
In a split gate type nonvolatile memory cell in which a MOS transistor for a nonvolatile memory using a charge storing film and a MOS transistor for selecting it are adjacently formed, the charge storing characteristic is improved and the resistance of the gate electrode is reduced. In order to prevent the thickness reduction at the corner portion of the charge storing film and improve the charge storing characteristic, a taper is formed on the sidewall of the select gate electrode. Also, in order to stably perform a silicide process for reducing the resistance of the self-aligned gate electrode, the sidewall of the select gate electrode is recessed. Alternatively, a discontinuity is formed between the upper portion of the self-aligned gate electrode and the upper portion of the select gate electrode.
摘要:
A memory cell includes a selective gate and a memory gate arranged on one side surface of the selective gate. The memory gate includes one part formed on one side surface of the selective gate and the other part electrically isolated from the selective gate and a p-well through an ONO layer formed below the memory gate. A sidewall-shaped silicon oxide is formed on side surfaces of the selective gate, and a sidewall-shaped silicon dioxide layer and a silicon dioxide layer are formed on side surfaces of the memory gate. The ONO layer formed below the memory gate is terminated below the silicon oxide, and prevents generation of a low breakdown voltage region in the silicon oxide near an end of the memory gate during deposition of the silicon dioxide layer.
摘要:
Disclosed is herein a semiconductor device having a DRAM with less scattering of threshold voltage of MISFET in a memory cell and having good charge retainability of a capacitor, and a manufacturing method of the semiconductor device. An anti-oxidation film is formed to the side wall of a gate electrode before light oxidation thereby suppressing the oxidation of the side wall for the gate electrode and decreasing scattering of the thickness of the film formed to the sidewall in an asymmetric diffusion region structure in which the impurity concentration of an n-type semiconductor region and a p-type semiconductor region on the side of the data line is made relatively higher than the impurity concentration in the n-type semiconductor region and p-type semiconductor region on the side of the capacitor, respectively.
摘要:
In a split gate type nonvolatile memory cell in which a MOS transistor for a nonvolatile memory using a charge storing film and a MOS transistor for selecting it are adjacently formed, the charge storing characteristic is improved and the resistance of the gate electrode is reduced. In order to prevent the thickness reduction at the corner portion of the charge storing film and improve the charge storing characteristic, a taper is formed on the sidewall of the select gate electrode. Also, in order to stably perform a silicide process for reducing the resistance of the self-aligned gate electrode, the sidewall of the select gate electrode is recessed. Alternatively, a discontinuity is formed between the upper portion of the self-aligned gate electrode and the upper portion of the select gate electrode.
摘要:
A capacitor consisting of a storage electrode (19), a capacitor dielectric film (20) and a plate electrode (21) is formed in a trench formed through dielectric films (6, 8, 10 and 12) stacked on a semiconductor substrate (1) and buried wiring layers (9 and 11) are formed under the capacitor. As the capacitor is formed not in the semiconductor substrate but over it, there is room in area in which the capacitor can be formed and the difficultly of forming wiring is reduced by using the wiring layers (9 and 11) for a global word line and a selector line. As the upper face of an dielectric film (32) which is in contact with the lower face of wiring (34) in a peripheral circuit area is extended into a memory cell area and is in contact with the side of the capacitor (33), step height between the peripheral circuit area and the memory cell area is remarkably reduced.
摘要:
Provided is a nonvolatile semiconductor memory device having a split gate structure, wherein a memory gate is formed over a convex shaped substrate and side surfaces of it is used as a channel. The nonvolatile semiconductor memory device according to the present invention is excellent in read current driving power even if a memory cell is scaled down.
摘要:
A refresh characteristic of a DRAM memory cell is improved and the performance of a MISFET formed in the periphery thereof and constituting a logic circuit is improved.Each gate electrode in a memory cell area is formed of p type polycrystalline silicon, and a cap insulating film on each gate electrode and a sidewall film on the sidewall thereof are formed of a silicon oxide film. A polycrystalline silicon film formed on the gate electrodes and between the gate electrodes is polished by a CMP method, and thereby contact electrodes are formed. Also, sidewall films each composed of a laminated film of the silicon oxide film and the polycrystalline silicon film are formed on the sidewall of the gate electrodes in the logic circuit area, and these films are used as a mask to form semiconductor areas. As a result, it is possible to reduce the boron penetration and form contact electrodes in a self-alignment manner. In addition, the performance of the MISFET constituting the logic circuit can be improved.
摘要:
A capacitor consisting of a storage electrode (19), a capacitor dielectric film (20) and a plate electrode (21) is formed in a trench formed through dielectric films (6, 8, 10 and 12) stacked on a semiconductor substrate (1) and buried wiring layers (9 and 11) are formed under the capacitor. As the capacitor is formed not in the semiconductor substrate but over it, there is room in area in which the capacitor can be formed and the difficulty of forming wiring is reduced by using the wiring layers (9 and 11) for a global word line and a selector line. As the upper face of an dielectric film (32) which is in contact with the lower face of wiring (34) in a peripheral circuit area is extended into a memory cell area and is in contact with the side of the capacitor (33), step height between the peripheral circuit area and the memory cell area is remarkably reduced.