Abstract:
An object of the present invention is to simplify a valve train system that can change valve operation characteristics of an intake valve(s) and/or an exhaust valve(s) mounted on an internal combustion engine while improving the response in changing valve operation characteristics. To achieve this object, according to the present invention, a valve train system of an internal combustion engine that can change valve operation characteristics of an intake valve and/or an exhaust valve comprises a plurality of changing mechanisms that change valve operation characteristics by connecting/disconnecting a plurality of power transmission members provided between a cam and a valve to/from each other, a switching pin that is provided in each changing mechanism in such a way as to be able to move forward and backward to provide switching between connection and disconnection of the plurality of power transmission members, an actuator that generates power for moving the switching pin forward and backward, and a distribution mechanism that distributes the power generated by one actuator to a plurality of switching pins.
Abstract:
A valve train for an internal combustion engine that uses motors to open/close intake valves of cylinders. The motors drive the intake valves for each of a plurality of groups of cylinders that perform an explosion stroke at substantially equal crank angle intervals. Since the intake valves are driven for each of the plurality of groups of cylinders that perform an explosion stroke at substantially equal crank angle intervals, the explosion stroke is performed regularly even when an operation is conducted with only a particular group of cylinders. This makes it possible to inhibit driveability deterioration.
Abstract:
A valve driving device (10), that converts rotational motion outputted from a valve-driving source to linear motion through cam mechanisms (13) provided to respective cylinders (2) and drives valves (3) in respective cylinders through the linear motion, the valve driving device is equipped with electric motors (11, 12) that are shared as the valve-driving source in a group of cylinders comprising a plurality of cylinders in which open-valve periods of the valves do not overlap; and motion-transmission mechanisms (14, 15) that transmit rotational motion of the electric motors (11, 12) to cams (16) in respective cam mechanisms (13) in the group of cylinders.
Abstract:
A lost motion spring is disposed to contact at one end an oscillating member interposed between a cam and a valve for synchronizing the oscillating of the valve with the rotation of the cam. The lost motion spring impels the oscillating member toward the cam. A spring support shaft is provided for supporting a second portion of the lost motion spring. A spring position adjustment mechanism is provided for adjusting the mounting position of the lost motion spring relative to the spring support shaft.
Abstract:
The present invention provides a variable valve mechanism control device that is capable of reducing the power consumption and rating of an electric motor by allowing camshaft rotary inertia torque to reduce spring reaction force during a valve lift. Camshaft rotary inertia force is increased to a value not smaller than a predetermined value before the start of a valve lift. During the time interval between the instant at which the valve lift starts and the instant at which the maximum lift is provided, the spring reaction force of a valve spring is used as deceleration torque for the camshaft rotary inertia force. During the time interval between the instant at which the maximum lift is provided and the instant at which the valve lift terminates, the spring reaction force is used as acceleration torque for the camshaft rotary inertia force. The camshaft rotary inertia force cancels the spring reaction force so that motor torque generated during a valve lift is composed of counter-friction torque only.
Abstract:
There is provided a valve gear (11) with a motor (12), a cam mechanism (14) which converts a rotational motion of the motor (12) into a linear motion of an intake valve (2) by a cam (21), and a motor control apparatus (30) which controls the motor (12) such that an acceleration characteristic during a lift of the intake valve (2) changes in correspondence to a rotation number of an internal combustion engine.
Abstract:
During a fuel cut, a recommended reactivated cylinder and a reactivatable cylinder are determined based on the stopped positions of an intake valve and an exhaust valve (step 104). A fastest reactivatable cylinder is then determined based on the crank angle, from among the recommended reactivated cylinder and the reactivatable cylinder (step 108). Also, the rotating direction of a motor when a variable valve drive apparatus starts to be driven again when the fastest reactivatable cylinder is made the reactivated cylinder is also determined. When a reactivation command is output, operation resumes from the fastest reactivatable cylinder when the situation calls for rapid reactivation (step 124). When the situation does not call for rapid reactivation, operation resumes from the recommended reactivated cylinder (step 118).
Abstract:
A valve driving device (10), that converts rotational motion outputted from a valve-driving source to linear motion through cam mechanisms (13) provided to respective cylinders (2) and drives valves (3) in respective cylinders through the linear motion, the valve driving device is equipped with electric motors (11, 12) that are shared as the valve-driving source in a group of cylinders comprising a plurality of cylinders in which open-valve periods of the valves do not overlap; and motion-transmission mechanisms (14, 15) that transmit rotational motion of the electric motors (11, 12) to cams (16) in respective cam mechanisms (13) in the group of cylinders.
Abstract:
The present invention includes a rocker arm 16, which has an arm roller 18 at the center, a lash adjuster 30 for supporting a fulcrum P of the rocker arm 16, an oscillation arm 20, which has an oscillation cam surface (a non-pushing section 24 and a pushing section 26) that is in contact with the arm roller 18, and an adjustment mechanism for changing the reference arm rotation angle of the oscillation arm 20 in relation to the rocker arm 16 with a view toward changing the operating angle and lift amount of a valve disc 12 within a predetermined adjustment range. The adjustment mechanism includes a control shaft 22, a roller contact surface 32, a control arm 34, and an oscillation roller arm 38. The lash adjuster 30 is positioned so that its expansion/contraction direction is substantially parallel to a virtual straight line joining the rotation center Q of the oscillation arm 20 to the rotation center S of the arm roller 18.
Abstract:
Disclosed is a variable valve mechanism 10 for changing the lift amount and operating angle of an internal combustion engine valve disc 12. The variable valve mechanism comprises a first cam 54, which rotates in accordance with crankshaft rotation; a transmission member 24, 38 that includes a second cam 32, 34, which oscillates in synchronism with the rotation of the first cam 54 and transmits the force exerted by the first cam 54 to the valve disc 12; a control shaft 40, which is adjusted for a predetermined rotation position; an adjustment mechanism 36, 38 for varying the lift amount and operating angle of the valve disc 12 by changing the oscillation range of the transmission member 24, 38 in accordance with the rotation position of the control shaft 40; a lost motion spring 60 for pressing the transmission member 24, 38 toward the first cam 54 to ensure that the transmission member 24, 38 remains coupled to the first cam 54; and an assist spring 64 for pressing the transmission member 24, 38 in resistance to the force exerted by the lost motion spring 60.