摘要:
An isolated polynucleotide which contains a polynucleotide sequence selected from the group comprising: (a) a polynucleotide which is at least 70% identical to a polynucleotide coding for a polypeptide containing the amino acid sequence of SEQ ID No. 2, (b) a polynucleotide coding for a polypeptide containing an amino acid sequence which is at least 70% identical to the amino acid sequence of SEQ ID No. 2, (c) a polynucleotide which is complementary to the polynucleotides of (a) or (b), and (d) a polynucleotide containing at least 15 consecutive nucleotides of the polynucleotide sequence of (a), (b) or (c), and a fermentation process for the preparation of L-amino acids using corynebacteria in which at least the pknB gene is amplified, and to the use, as hybridization probes, of polynucleotides containing the sequences according to the invention.
摘要:
The invention relates to a recombinant coryneform bacterium which secretes an organic chemical compound and in which the sugR gene which codes for a polypeptide having the activity of an SugR regulator has been attenuated. The invention further relates to a processes for using this bacterium for the fermentative preparation of organic chemical compounds.
摘要:
An isolated mutant of a coryneform bacterium comprising a gene coding for a polypeptide having GTP-pyrophosphate kinase activity, wherein said polypeptide comprises an amino acid sequence in which one of the proteinogenic amino acids other than L-proline is present in position 38 or a corresponding or comparable position. In addition, an isolated polynucleotide encoding a polypeptide having GTP-pyrophosphate kinase enzyme activity, a vector comprising the isolated polynucleotide, a recombinant microorganism comprising the vector, and a process for preparing the recombinant coryneform bacterium is described. A method for over-expressing a GTP-pyrophosphate kinase, a method of preparing an L-amino acid, an L-lysine comprising and L-tryptophan comprising feed is also described.
摘要:
The invention relates to mutants and alleles of the zwf gene of coryneform bacteria, which encode variants of the Zwf subunit of glucose 6-phosphate dehydrogenase (EC: 1.1.1.49), and to processes for preparing amino acids, in particular L-lysine and L-tryptophan, by using bacteria which harbor said alleles.
摘要:
The invention relates to mutants and alleles of the opcA gene of coryneform bacteria, which encode variants of the OpcA subunit of glucose 6-phosphate dehydrogenase (EC: 1.1.1.49), and to processes for preparing amino acids, in particular L-lysine and L-tryptophan, by using bacteria which harbor said alleles.
摘要:
The invention relates to mutants and alleles of the gnd gene from coryneform bacteria coding for 6-phosphogluconate dehydrogenases which contain at position 329 or a comparable position of the amino acid sequence any amino acid other than L-valine, and to processes for the production of amino acids, preferably L-lysine and L-tryptophan, by fermentation using bacteria that contain these alleles.
摘要:
A process for the production of an L-amino acid wherein coryneform bacteria (e.g. Coryneform glutamicum) in which expression of the mqo gene coding for malate quinone oxidoreductase is attenuated are fermented to produce a desired amino acid, and the amino acid is concentrated in the medium or cells and isolated. Optionally, further genes in the biosynthetic pathway of the desired amino acid are enhanced, and/or metabolic pathways that reduce formation of the amino acid are suppressed.
摘要:
Alleles of the lysC gene from corynebacteria that code for desensitized aspartokinases, and to processes for the preparation of L-lysine using bacteria containing these alleles.
摘要:
The present invention relates to polynucleotides corresponding to the luxR gene and which encode a LuxR transcriptional activator, methods of producing L-amino acids, and methods of screening for polynucleotides which encode proteins having LuxR transcriptional activation activity.
摘要:
The invention provides nucleotide sequences from Coryneform bacteria coding for the dep33 efflux protein and a process for the fermentative preparation of amino acids using bacteria in which the dep33 efflux protein is attenuated.