摘要:
A method (and structure formed thereby) of forming a metal silicide contact on a non-planar silicon containing region having controlled consumption of the silicon containing region, includes forming a blanket metal layer over the silicon containing region, forming a silicon layer over the metal layer, etching anisotropically and selectively with respect to the metal the silicon layer, reacting the metal with silicon at a first temperature to form a metal silicon alloy, etching unreacted portions of the metal layer, annealing at a second temperature to form an alloy of metal-Si2, and selectively etching the unreacted silicon layer.
摘要:
A method for forming germano-silicide contacts atop a Ge-containing layer that is more resistant to etching than are conventional silicide contacts that are formed from a pure metal is provided. The method of the present invention includes first providing a structure which comprises a plurality of gate regions located atop a Ge-containing substrate having source/drain regions therein. After this step of the present invention, a Si-containing metal layer is formed atop the said Ge-containing substrate. In areas that are exposed, the Ge-containing substrate is in contact with the Si-containing metal layer. Annealing is then performed to form a germano-silicide compound in the regions in which the Si-containing metal layer and the Ge-containing substrate are in contact; and thereafter, any unreacted Si-containing metal layer is removed from the structure using a selective etch process. In some embodiments, an additional annealing step can follow the removal step. The method of the present invention provides a structure having a germano-silicide contact layer atop a Ge-containing substrate, wherein the germano-silicide contact layer contains more Si than the underlying Ge-containing substrate.
摘要:
The present invention provides a method for forming a self-aligned Ni alloy silicide contact. The method of the present invention begins by first depositing a conductive Ni alloy with Pt and optionally at least one of the following metals Pd, Rh, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W or Re over an entire semiconductor structure which includes at least one gate stack region. An oxygen diffusion barrier comprising, for example, Ti, TiN or W is deposited over the structure to prevent oxidation of the metals. An annealing step is then employed to cause formation of a NiSi, PtSi contact in regions in which the metals are in contact with silicon. The metal that is in direct contact with insulating material such as SiO2 and Si3N4 is not converted into a metal alloy silicide contact during the annealing step A selective etching step is then performed to remove unreacted metal from the sidewalls of the spacers and trench isolation regions.
摘要:
A method that solves the increased nucleation temperature that is exhibited during the formation of cobalt disilicides in the presence of Ge atoms is provided. The reduction in silicide formation temperature is achieved by first providing a structure including a Co layer including at least Ni, as an additive element, on top of a SiGe containing substrate. Next, the structure is subjected to a self-aligned silicide process which includes a first anneal, a selective etching step and a second anneal to form a solid solution of (Co, Ni) disilicide on the SiGe containing substrate. The Co layer including at least Ni can comprise an alloy layer of Co and Ni, a stack of Ni/Co or a stack of Co/Ni. A semiconductor structure including the solid solution of (Co, Ni) disilicide on the SiGe containing substrate is also provided.
摘要:
A method for forming gennano-silicide contacts atop a Ge-containing layer that is more resistant to etching than are conventional silicide contacts that are formed from a pure metal is provided. The method of the present invention includes first providing a structure which comprises a plurality of gate regions located atop a Ge-containing substrate having source/drain regions therein. After this step of the present invention, a Si-containing metal layer is formed atop the said Ge-containing substrate. In areas that are exposed, the Ge-containing substrate is in contact with the Si-containing metal layer. Annealing is then performed to form a germano-silicide compound in the regions in which the Si-containing metal layer and the Ge-containing substrate are in contact; and thereafter, any unreacted Si-containing metal layer is removed from the structure using a selective etch process. In some embodiments, an additional annealing step can follow the removal step. The method of the present invention provides a structure having a germano-silicide contact layer atop a Ge-containing substrate, wherein the germano-silicide contact layer contains more Si than the underlying Ge-containing substrate.
摘要:
A method for fabricating a silicide gate field effect transistor includes masking a silicon source/drain region prior to forming the silicide gate by annealing a metal silicide forming metal layer contacting a silicon-containing gate. The silicide gate may be either a fully silicided gate or a partially silicided gate. After unmasking the source/drain region a silicide layer may be formed upon the source/drain region, and also upon the partially silicided gate. The second silicide layer and the partially silicided gate also provide a fully silicided gate.
摘要:
The use of nickel, Ni, based alloys that enables higher contact module which, in turn, provides the device designers additional gains in transistor speeds is provided. Specifically, the use of Ni based alloys for silicide formation in 90 nm technologies and beyond enables higher temperature (greater than 450° C.) processing in the contact module for advanced devices. This capability of higher thermal budget in processing stress inducing films in the contact module helps enhance device performance beyond what is possible with conventional pure Ni based silicides. Another benefit of this application is the deposition temperature of the contact dielectric (e.g., pre-metal dielectric) can be increased to enable moisture free, denser, higher quality films.
摘要:
A method of reducing the contact resistance of metal silicides to the p+ silicon area or the n+ silicon area of the substrate comprising: (a) forming a metal germanium (Ge) layer over a silicon-containing substrate, wherein said metal is selected from the group consisting of Co, Ti, Ni and mixtures thereof; (b) optionally forming an oxygen barrier layer over said metal germanium layer; (c) annealing said metal germanium layer at a temperature which is effective in converting at least a portion thereof into a substantially non-etchable metal silicide layer, while forming a Si—Ge interlayer between said silicon-containing substrate and said substantially non-etchable metal silicide layer; and (d) removing said optional oxygen barrier layer and any remaining alloy layer. When a Co or Ti alloy is employed, e.g., Co—Ge or Ti—Ge, two annealing steps are required to provide the lowest resistance phase of those metals, whereas, when Ni is employed, a single annealing step forms the lowest resistance phase of Ni silicide.
摘要:
Very low resistance, scaled in MOSFET devices are formed by employing thin silicidation-stop extension that act both as a silicidation “stop” barriers and as thin interface layers between source/drain silicide regions and channel region of the MOSFET. By acting as silicidation stops, the silicidation-stop extensions confine silicidation, and are not breached by source/drain silicide. This permits extremely thin, highly-doped silicidation-stop extensions to be formed between the silicide and the channel, providing an essentially ideal, low series resistance interface between the silicide and the channel.
摘要:
A method (and resulting structure) for fabricating a silicide for a semiconductor device, includes depositing a metal or an alloy thereof on a silicon substrate, reacting the metal or the alloy to form a first silicide phase, etching any unreacted metal, depositing a silicon cap layer over the first silicide phase, reacting the silicon cap layer to form a second silicide phase, for the semiconductor device, and etching any unreacted silicon. The substrate can be either a silicon-on-insulator (SOI) substrate or a bulk silicon substrate.