METHODS AND APPARATUS FOR SURFACE WETTING CONTROL

    公开(公告)号:US20180304318A1

    公开(公告)日:2018-10-25

    申请号:US15492433

    申请日:2017-04-20

    Abstract: Methods and apparatus for surface wetting control are disclosed. In certain described examples, an apparatus can expel fluid from a droplet on a surface using a transducer mechanically coupled to the surface. A first area of the surface can have a first wettability for the fluid, and a second area of the surface can have a second wettability for the fluid. The first wettability of the first area of the surface can be greater than the second wettability of the second area of the surface. The first area and the second area can be arranged in a patterned arrangement.

    Methods and apparatus for digital material deposition onto semiconductor wafers

    公开(公告)号:US11487206B2

    公开(公告)日:2022-11-01

    申请号:US16729919

    申请日:2019-12-30

    Abstract: A microelectronic device is formed by dispensing discrete amounts of a mixture of photoresist resin and solvents from droplet-on-demand sites onto a wafer to form a first photoresist sublayer, while the wafer is at a first temperature which allows the photoresist resin to attain less than 10 percent thickness non-uniformity. The wafer moves under the droplet-on-demand sites in a first direction to form the first photoresist sublayer. A portion of the solvents in the first photoresist sublayer is removed. A second photoresist sublayer is formed on the first photoresist sublayer using the droplet-on-demand sites while the wafer is at a second temperature to attain less than 10 percent thickness non-uniformity in the combined first and second photoresist sublayers. The wafer moves under the droplet-on-demand sites in a second direction for the second photoresist sublayer, opposite from the first direction.

    METHODS AND APPARATUS FOR DIGITAL MATERIAL DEPOSITION ONTO SEMICONDUCTOR WAFERS

    公开(公告)号:US20210200094A1

    公开(公告)日:2021-07-01

    申请号:US16729919

    申请日:2019-12-30

    Abstract: A microelectronic device is formed by dispensing discrete amounts of a mixture of photoresist resin and solvents from droplet-on-demand sites onto a wafer to form a first photoresist sublayer, while the wafer is at a first temperature which allows the photoresist resin to attain less than 10 percent thickness non-uniformity. The wafer moves under the droplet-on-demand sites in a first direction to form the first photoresist sublayer. A portion of the solvents in the first photoresist sublayer is removed. A second photoresist sublayer is formed on the first photoresist sublayer using the droplet-on-demand sites while the wafer is at a second temperature to attain less than 10 percent thickness non-uniformity in the combined first and second photoresist sublayers. The wafer moves under the droplet-on-demand sites in a second direction for the second photoresist sublayer, opposite from the first direction.

    Nanoparticle backside die adhesion layer

    公开(公告)号:US11031364B2

    公开(公告)日:2021-06-08

    申请号:US15914761

    申请日:2018-03-07

    Abstract: In described examples, a microelectronic device includes a microelectronic die with a die attach surface. The microelectronic device further includes a nanoparticle layer coupled to the die attach surface. The nanoparticle layer may be in direct contact with the die attach surface, or may be coupled to the die attach surface through an intermediate layer, such as an adhesion layer or a contact metal layer. The nanoparticle layer includes nanoparticles having adjacent nanoparticles adhered to each other. The microelectronic die is attached to a package substrate by a die attach material. The die attach material extends into the nanoparticle layer and contacts at least a portion of the nanoparticles.

Patent Agency Ranking