摘要:
In this method for manufacturing a semiconductor element, a modified layer produced by subjecting a substrate (70) to mechanical polishing is removed by heating the substrate (70) under Si vapor pressure. An epitaxial layer formation step, an ion implantation step, an ion activation step, and a second removal step are then performed. In the second removal step, macro-step bunching and insufficient ion-implanted portions of the surface of the substrate (70) performed the ion activation step are removed by heating the substrate (70) under Si vapor pressure. After that, an electrode formation step in which electrodes are formed on the substrate (70) is performed.
摘要:
In this method for manufacturing a semiconductor element, a modified layer produced by subjecting a substrate (70) to mechanical polishing is removed by heating the substrate (70) under Si vapor pressure. An epitaxial layer formation step, an ion implantation step, an ion activation step, and a second removal step are then performed. In the second removal step, macro-step bunching and insufficient ion-implanted portions of the surface of the substrate (70) performed the ion activation step are removed by heating the substrate (70) under Si vapor pressure. After that, an electrode formation step in which electrodes are formed on the substrate (70) is performed.
摘要:
A method and structure for integrating gallium nitride into a semiconductor substrate. The method may also include means for isolating the gallium nitride from the semiconductor substrate.
摘要:
A method for manufacturing a submicron semiconductor structure on a substrate, including: forming at least one template layer over a support substrate; forming one or more template structures, including one or more recesses and/or mesas, in the template layer, the one or more template structures including one or more edges extending into or out of the top surface of the template layer; coating at least part of the one or more template structures with a liquid semiconductor precursor; and, annealing and/or exposing the liquid semiconductor precursor coated template structures to light, wherein during the annealing and/or light exposure a part of the liquid semiconductor precursor accumulates by capillary forces against at least part of the one or more edges, the annealing and/or light exposure transforming the accumulated liquid semiconductor precursor into a submicron semiconductor structure extending along at least part of the one or more edges.
摘要:
A method for forming a silicon layer using a liquid silane compound is described. The method includes the steps of: forming a first layer on a substrate, preferably a flexible substrate, the first layer having a (poly)silane; and, irradiating with light having one or more wavelength within the range between 200 and 400 nm for transforming the polysilane in silicon, preferably amorphous silicon or polysilicon.
摘要:
Methods of increasing etch selectivity in imprint lithography are described which employ material deposition techniques that impart a unique morphology to the multi-layer material stacks, thereby enhancing etch process window and improving etch selectivity. For example, etch selectivity of 50:1 or more between patterned resist layer and deposited metals, metalloids, or non-organic oxides can be achieved, which greatly preserves the pattern feature height prior to the etch process that transfers the pattern into the substrate, allowing for sub-20 nm pattern transfer at high fidelity.
摘要:
A method and structure for integrating gallium nitride into a semiconductor substrate. The method may also include means for isolating the gallium nitride from the semiconductor substrate.
摘要:
The present invention discloses an electronic device using a group III nitride substrate fabricated via the ammonothermal method. By utilizing the high-electron concentration of ammonothermally grown substrates having the dislocation density less than 105 cm−2, combined with a high-purity active layer of Ga1-x-yAlxInyN (0≦x≦1, 0≦y≦1) grown by a vapor phase method, the device can attain high level of breakdown voltage as well as low on-resistance. To realize a good matching between the ammonothermally grown substrate and the high-purity active layer, a transition layer is optionally introduced. The active layer is thicker than a depletion region created by a device structure in the active layer.
摘要:
A first patterned contact layer, for example a gate electrode, is formed over an insulative substrate. Insulating and functional layers are formed at least over the first patterned contact layer. A second patterned contact layer, for example source/drain electrodes, is formed over the functional layer. Insulative material is then selectively deposited over at least a portion of the second patterned contact layer to form first and second wall structures such that at least a portion of the second patterned contact layer is exposed, the first and second wall structures defining a well therebetween. Electrically conductive or semiconductive material is deposited within the well, for example by jet-printing, such that the first and second wall structures confine the conductive or semiconductive material and prevent spreading and electrical shorting to adjacent devices. The conductive or semiconductive material is in electrical contact with the exposed portion of the second patterned contact layer to form, e.g., an operative transistor.
摘要:
A coating apparatus including a coating part which applies a liquid material including an oxidizable metal on a substrate; a chamber having a coating section in which the coating part applies the liquid material on the substrate and a transport section into which the liquid material is transported; an adjusting part which adjusts at least one of oxygen concentration and humidity inside the chamber; and a control part which stops an operation of the coating part in response to the entrance of foreign object into the chamber.