Slurry compositions for chemical mechanical planarization

    公开(公告)号:US12261055B2

    公开(公告)日:2025-03-25

    申请号:US17982028

    申请日:2022-11-07

    Abstract: The method includes receiving a semiconductor device having a first surface and a second surface. The first surface is a top surface including a conductive material exposed thereon; and the second surface is an embedded surface including the conductive material and a dielectric material. The method also includes selecting a first polishing slurry to achieve a first polishing rate of the conductive material in the first polishing slurry and a second polishing rate of the dielectric material in the first polishing slurry. The method further includes selecting a second polishing slurry to achieve a third polishing rate of the conductive material in the second polishing slurry and a fourth polishing rate of the dielectric material in the second polishing slurry. The method additionally includes polishing the first surface with the first polishing slurry until the second surface is exposed; and polishing the second surface with the second polishing slurry.

    Slurry compositions for chemical mechanical planarization

    公开(公告)号:US11495471B2

    公开(公告)日:2022-11-08

    申请号:US16991975

    申请日:2020-08-12

    Abstract: A semiconductor substrate has an exposed surface having a compositionally uniform metal, and an embedded surface having the metal and an oxide. The exposed surface is polished using a first slurry including a first abrasive and a first amine-based alkaline until the embedded surface is exposed. The embedded surface is polished using a second slurry including a second abrasive and a second amine-based alkaline. The second abrasive is different from the first abrasive. The second amine-based alkaline is different from the first amine-based alkaline. The metal and the oxide each has a first and a second removal rate in the first slurry, respectively, and a third and fourth removal rate in the second slurry, respectively. A ratio of the first removal rate to the second removal rate is greater than 30:1, and a ratio of the third removal rate to the fourth removal rate is about 1:0.5 to about 1:2.

    Tuning Threshold Voltage in Field-Effect Transistors

    公开(公告)号:US20220181467A1

    公开(公告)日:2022-06-09

    申请号:US17676691

    申请日:2022-02-21

    Abstract: A semiconductor structure includes an interfacial layer disposed over a semiconductor layer, a high-k gate dielectric layer disposed over the interfacial layer, where the high-k gate dielectric layer includes a first metal, a metal oxide layer disposed between the high-k gate dielectric layer and the interfacial layer, where the metal oxide layer is configured to form a dipole moment with the interfacial layer, and a metal gate stack disposed over the high-k gate dielectric layer. The metal oxide layer includes a second metal different from the first metal, and a concentration of the second metal decreases from a top surface of the high-k gate dielectric layer to the interface between the high-k gate dielectric layer and the interfacial layer.

    Tuning threshold voltage in field-effect transistors

    公开(公告)号:US11257923B2

    公开(公告)日:2022-02-22

    申请号:US16573733

    申请日:2019-09-17

    Abstract: A method includes removing a dummy gate structure to form a gate trench over a semiconductor layer, forming a high-k gate dielectric layer over an interfacial layer exposed in the gate trench, depositing a metal-containing precursor over the high-k gate dielectric layer to form a metal-containing layer, and subsequently depositing an aluminum-containing precursor over the metal-containing layer, where depositing the aluminum-containing precursor forms an aluminum oxide layer at an interface between the high-k gate dielectric layer and the interfacial layer and where the metal-containing precursor includes a metal different from aluminum. The method further includes, subsequent to depositing the aluminum-containing precursor, removing a portion of the metal-containing layer, depositing a work-function metal layer over a remaining portion of the metal-containing layer, and forming a bulk conductive layer over the work-function metal layer, resulting in a metal gate structure.

    SEMICONDUCTOR DEVICE WITH MULTI-THRESHOLD GATE STRUCTURE

    公开(公告)号:US20210249517A1

    公开(公告)日:2021-08-12

    申请号:US16785919

    申请日:2020-02-10

    Abstract: The present disclosure describes a semiconductor device that includes a substrate and a first transistor on the substrate. The first transistor includes a first gate structure and the first gate structure includes a gate dielectric layer and a first work function layer on the gate dielectric layer. The first gate structure also includes a capping layer on the first work function layer. The semiconductor device also includes a second transistor on the substrate, in which the second transistor includes a second gate structure. The second gate structure includes the gate dielectric layer and a second work function layer on the gate dielectric layer. The second gate structure also includes the first work function layer on the second work function layer and the silicon capping layer on the first work function layer.

    GATE STRUCTURES FOR SEMICONDUCTOR DEVICES

    公开(公告)号:US20210118995A1

    公开(公告)日:2021-04-22

    申请号:US16657017

    申请日:2019-10-18

    Abstract: The structure of a semiconductor device with different gate structures configured to provide ultra-low threshold voltages and a method of fabricating the semiconductor device are disclosed. The method includes forming first and second nanostructured channel regions in first and second nanostructured layers, respectively, and forming first and second gate-all-around (GAA) structures surrounding the first and second nanostructured channel regions, respectively. The forming the first and second GAA structures includes selectively forming an Al-based n-type work function metal layer and a Si-based capping layer on the first nanostructured channel regions, depositing a bi-layer of Al-free p-type work function metal layers on the first and second nanostructured channel regions, depositing a fluorine blocking layer on the bi-layer of Al-free p-type work function layers, and depositing a gate metal fill layer on the fluorine blocking layer.

Patent Agency Ranking