摘要:
This invention is a method of improving a data retention ability of a semiconductor memory device having a plurality of nonvolatile memory cells storing a plurality of memory states. The method includes the steps of: (a) selecting the nonvolatile memory cells in a first memory group each of which accumulates charges higher in level than a first threshold from the plurality of nonvolatile memory cells; (b) extracting the nonvolatile memory cells in a first sub-group each of which accumulates the charges lower in level than a second threshold from the nonvolatile memory cells in the first memory group; and (c) programming the nonvolatile memory cells in the first sub-group until each of the nonvolatile memory cells accumulates the charges higher in level than the second threshold.
摘要:
In a semiconductor storage device, a gate insulating film (12) and a gate electrode (13) are laid on a first conductivity type semiconductor substrate (11), and charge holding portions (10A, 10B) are formed on both sides of the gate electrode (13). Second conductivity type first and second diffusion layer regions (17, 18) are formed in regions of the semiconductor substrate (11) corresponding to the charge holding portions (10A, 10B). The charge holding portions (10A, 10B) are each structured so as to change, in accordance with an electric charge amount held in the charge holding portions, a current amount flowing from one of the second conductivity type diffusion layer regions (17, 18) to the other of the diffusion layer regions through a channel region when voltage is applied to the gate electrode (13). Part of each charge holding portion (10A, 10B) is present below an interface of the gate insulating film (12) and the channel region.
摘要:
A semiconductor memory device includes a memory array; a storage section that receives a maximum pulse value from a user of the semiconductor memory device; a control section that executes a writing processing or an erasing processing for the memory array and restarts the writing or erasing processing in the case where the processing for the memory array has failed; a counter section that counts up a number of processings performed by the control section; and a detection section that detects when the number of processings is equal to the maximum pulse value to prevent the control section from restarting the writing or erasing processing.
摘要:
A semiconductor memory device including memory cells, each memory cell including: a gate insulating film formed on a semiconductor substrate; a gate electrode formed on the gate insulating film; a channel region located below the gate electrode; a pair of source and drain regions arranged on a opposite sides, respectively, of the channel region, the source and drain regions having a conductive type opposite to that of the channel region; and memory functional units located on opposite sides, respectively, of the gate electrode, each memory functional unit including a charge retaining portion and an anti-dissipation insulator, the charge retaining portion being made of a material serving to store charges, the anti-dissipation insulator serving to prevent the stored charges from being dissipated by separating the charge retaining portion from both the gate electrode and the substrate, wherein a distance between a side wall of the gate electrode and a side of the charge retaining portion facing each other (T2) is adapted to differ from a distance between a bottom of the charge retaining portion and a surface of the substrate (T1).
摘要:
When an input voltage determining circuit 24 determines that an input voltage exceeds a prescribed voltage, a control circuit 25 of a positive polarity power selector circuit 22 turns on a first switch SW1 and turns off second and third switches SW2 and SW3, thereby supplying the input voltage to a memory cell array 21 via the first switch SW1. When the input voltage determining circuit 24 determines that the input voltage is not higher than the prescribed voltage, the control circuit 25 turns off the first switch SW1 and turns on the second and third switches SW2 and SW3, thereby supplying a voltage from a charge pump 23 via the second and third switches SW2 and SW3. By this operation, the memory element is able to retain storage of two bits or more even if miniaturized, to execute stable operation with a small circuit area and to prevent circuit malfunction attributed to a small current supplied to the memory cell array.
摘要:
A semiconductor memory device includes a control logic circuit for generating read selection signals each selecting one plane for reading and write selection signals each selecting one plane for writing from a plurality of planes in which memory cells are arranged in an array, an address selection circuit disposed for each of the planes, and an address buffer circuit for simultaneously providing a write address and a read address. Each of the address selection circuits is configured so as to be able to receive one of the read selection signals and one of the write selection signals from the control logic circuit. The memory cell includes a gate electrode formed over a semiconductor layer via a gate insulating film, a channel region disposed below the gate electrode, diffusion regions disposed on both sides of the channel region and having a conductive type opposite to that of the channel region, and memory functional units formed on both sides of the gate electrode and having the function of retaining charges.
摘要:
A semiconductor storage device is provided with a gate electrode, a semiconductor layer, a gate insulating film sandwiched between the gate electrode and the semiconductor layer, a channel region under the gate electrode, diffusion regions provided respectively on two sides of the channel regions and being of the other conductivity region than the channel region, memory elements 1 provided respectively on two sides of the gate electrode and having a function of holding charges, and a word line driver circuit, in which the CMOS technique is used. The driver circuit includes a common node for supplying a potential for activating an output inverter for driving a row word line. While the semiconductor storage device is in a read mode, a CMOS inverter other than the output inverter controls a signal at the common node, the CMOS inverter connected to a read input line. While the semiconductor storage device is in writing/erasing mode, a plurality of writing/erasing transistors connected in series to the node are activated in accordance with an address signal, in order to lower the common node to a low potential.
摘要:
While a memory section (1) is in standby mode, a power supply/interruption circuit (2) supplies electric power to a memory section (1) only during periods in which a refresh operation is performed in synchronization with a timing of the refresh operation generated by the clock circuit (3), and interrupts power supply to the memory section (1) during periods in which the refresh operation is not performed. Thus, power consumption of the memory section that performs the refresh operations is suppressed, by which a power consumption reduction of the semiconductor storage device is realized.
摘要:
A variable resistance functional body has an insulator interposed between a first electrode and a second electrode and interposed between a third electrode and a fourth electrode. The insulator contains a plurality of conductive particles. The conductive particles are formed by implanting a substance for forming the conductive particles into the insulator by the negative ion implantation method. The conductive particles are provided so that an electrical resistance between the third electrode and the fourth electrode changes on the basis of a size effect or a change in size between before and after application of a prescribed voltage across the first electrode and the second electrode.
摘要:
A solid-state imaging device is provided, which comprises unit pixel portions. Each unit pixel portion comprises a first conductivity type substrate, a second conductivity type semiconductor layer, a first conductivity type well region, a light receiving region for generating electric charges when irradiated with light, an electric charge accumulation region for accumulating the electric charges from the light receiving region, and a transistor capable of reading out a signal corresponding to an amount of the electric charges accumulated in the electric charge accumulation region. A surface of the light receiving region is covered with an insulating film made of the same material as that of a gate insulating film of the transistor.