摘要:
A light-emitting element includes a first conductivity type semiconductor base, a plurality of first conductivity type protrusion-shaped semiconductors formed on the semiconductor base, and a second conductivity type semiconductor layer that covers the protrusion-shaped semiconductors.
摘要:
A metal line 731 is formed in a linear area S of an insulative substrate 720, and moreover a metal line 732 is formed generally parallel to the metal line 731 with a specified distance thereto. The metal line 731 is connected to an n-type semiconductor core 701 of bar-like structure light-emitting elements 710A to 710D, and the metal line 732 is connected to a p-type semiconductor layer 702. By dividing the insulative substrate 720 into a plurality of divisional substrates, a plurality of light-emitting devices in each of which a plurality of bar-like structure light-emitting elements 710 are placed on the divisional substrates are formed.
摘要:
A semiconductor memory device includes a page buffer circuit and an arrangement of memory elements each including: a gate electrode provided on a semiconductor layer with an intervening gate insulating film; a channel region provided beneath the gate electrode; a diffusion area provided on both sides of the channel region, having an opposite polarity to the channel region; and a memory functioning member provided on both sides of the gate electrodes, having a function of storing electric charge. The page buffer circuit provides a common resource shared between a memory array controller and a user. The page buffer circuit has two planes containing random access memory arrays. The page buffer circuit also includes a mode control section to facilitate access to the planes over a main bus in user mode and access to the planes by the memory array controller in memory control mode.
摘要:
A semiconductor storage device includes a field effect transistor which has a gate insulator, a gate electrode and a pair of source/drain diffusion regions on a semiconductor substrate. The device also includes a coating film made of a dielectric having a function of storing electric charge and formed on the substrate in such a manner as to cover an upper surface and side surfaces of the gate electrode. The device further includes an interlayer insulator formed on and in contact with the coating film. The device still further includes contact members which extend vertically through the interlayer insulator and the coating film on the source/drain diffusion regions and which are electrically connected to the source/drain diffusion regions, respectively. The coating film and the interlayer insulator are made of materials which are selectively etchable to each other. Thus, the issues of overerase and read failures due to the overerase can be solved, and the device reliability can be enhanced.
摘要:
A display driver includes a display driving part for receiving image data and outputting a drive signal to a display panel; a nonvolatile memory part for storing control information for controlling output of the display driving part; and a control part for controlling output of the display driving part on the basis of the control information, wherein the nonvolatile memory part has a nonvolatile memory cell, and the nonvolatile memory cell includes a gate electrode formed on a semiconductor layer via a gate insulating film, a channel region disposed under the gate electrode, diffusion regions disposed on both sides of the channel region and having a conductive type opposite to that of the channel region, and memory functional units formed on both sides of the gate electrode and having a function for retaining charges.
摘要:
A semiconductor storage device includes a plurality of memory elements and a redundancy circuit. Each of the memory elements includes a gate electrode provided on a semiconductor layer, a gate insulating film intervening between the gate electrode and the semiconductor layer, a channel region provided under the gate electrode, diffusion regions respectively provided at both sides of the channel region, the diffusion regions having a conductivity type which is opposite a conductivity type of the channel region, and memory functioning members respectively provided at both sides of the gate electrode, the memory functioning members having a function of holding charge. The redundancy circuit addresses a single chip memory including cells associated with a plurality of redundant lines and includes a decoder for selecting a redundant row. The semiconductor storage device can permanently inactivate further programming of the redundancy circuit in order to prevent a user from performing inadvertent programming.
摘要:
The present invention provides a semiconductor storage device having: a first conductivity type region formed in a semiconductor layer; a second conductivity type region formed in the semiconductor layer in contact with the first conductivity type region; a memory functional element disposed on the semiconductor layer across the boundary of the first and second conductivity type regions; and an electrode provided in contact with the memory functional element and on the first conductivity type region via an insulation film, and a portable electronic apparatus comprising the semiconductor storage device. The present invention can fully cope with scale-down and high-integration by constituting a selectable memory cell substantially of one device.
摘要:
In a semiconductor storage device, a gate insulating film and a gate electrode are laid on a first conductivity type semiconductor substrate, and charge holding portions are formed on both sides of the gate electrode. Second conductivity type first and second diffusion layer regions are formed in regions of the semiconductor substrate corresponding to the charge holding portions. The charge holding portions are each structured so as to change, in accordance with an electric charge amount held in the charge holding portions, a current amount flowing from one of the second conductivity type diffusion layer regions to the other of the diffusion layer regions through a channel region when voltage is applied to the gate electrode. Part of each charge holding portion is present below an interface of the gate insulating film and the channel region.
摘要:
A semiconductor storage device is provided, which comprises a memory array comprising memory elements, a write state machine for performing a sequence of a program or erase operation with respect to the memory array, a decoder for decoding a signal indicating a current state of the write state machine, which is output from the write state machine, and outputting a status signal indicating a status of the program or erase operation with respect to the memory array, a status register for storing the status signal, and an output circuit for outputting the status signal stored in the status register. Each memory element comprises a gate electrode, a channel region, diffusion regions, and memory function sections provided on opposite sides of the gate electrode and having a function of retaining charges.
摘要:
A semiconductor memory includes: a p-type semiconductor (p-type semiconductor film on a substrate, a p-type well region in a semiconductor substrate, or an insulator); a gate insulating film formed on the p-type semiconductor; a gate electrode formed on the gate insulating film; two charge storage sections formed on side walls of the gate electrode; a channel region provided below the gate electrode; and a first n-type diffusion layer region and a second n-type diffusion layer region provided to sides of the channel region, wherein: the charge storage sections are arranged to change an electric current flow between the first n-type diffusion layer region and the second n-type diffusion layer region under application of a voltage to the gate electrode according to the quantity of electric charges stored in the charge storage sections; and the first n-type diffusion layer region is set to a reference voltage, the other n-type diffusion layer region is set to a voltage greater than the reference voltage, and the gate electrode is set to a voltage greater than the reference voltage. Thus, the semiconductor memory obtained is capable of 2 bit operation and easy to miniaturize.