Abstract:
The invention concerns an illumination system for wavelengths ≦193 nm, particularly for EUV lithography, with at least one light source, which has an illumination A in a predetermined surface; at least one device for producing secondary light sources; at least one mirror or lens device comprising at least one mirror or one lens, which is or are organized into raster elements; one or more optical elements, which are arranged between the mirror or lens device comprising at least one mirror or one lens, which is or are organized into raster elements and the reticle plane, whereby the optical elements image the secondary light sources in the exit pupil of the illumination system. The illumination system is characterized by the fact that the raster elements of the one or more mirror or lenses are shaped and arranged in such a way that the images of the raster elements cover by means of the optical elements the major portion of the reticle plane and that the exit pupil defined by aperture and filling degree is illuminated.
Abstract:
A projection illumination installation for EUV microlithography includes an EUV synchrotron light source for producing EUV used light. An object field is illuminated with the used light using illumination optics. The object field is mapped into an image field using projection optics. A scanning device is used to illuminate the object field by deflecting the used light in sync with a projection illumination period. The result is a projection illumination installation in which the output power from an EUV synchrotron light source can be used as efficiently as possible for EUV projection illumination.
Abstract:
An EUV collector for collecting and transmitting radiation from an EUV radiation source includes at least one collector mirror for reflecting an emission of the EUV radiation source, which is rotationally symmetric with respect to a central axis. The EUV collector also includes a cooling device for cooling the at least one collector mirror. The cooling device has at least one cooling element, which has a course with respect to the collector mirror, in each case, such that the projection of the course into a plane perpendicular to the central axis has a main direction, which encloses an angle of at most 20° with respect to a predetermined preferred direction. The collector transmits improved quality radiation to illuminate an object field.
Abstract:
Collectors with mirror shells arranged inside each other, illumination systems equipped with such collectors, projection exposure apparatuses equipped with such illumination systems, methods of manufacturing microelectronic components with such projection exposure apparatuses, and related systems, components and methods are disclosed.
Abstract:
An illumination optics for EUV microlithography guides an illumination light bundle from a radiation source to an object field with an extension ratio between a longer field dimension and a shorter field dimension, where the ratio is considerably greater than 1. A field facet mirror has a plurality of field facets that set defined illumination conditions in the object field. A following optics downstream of the field facet mirror transmits the illumination light into the object field. The following optics includes a pupil facet mirror with a plurality of pupil facets. The field facets are in each case individually allocated to the pupil facets so that portions of the illumination light bundle impinging upon in each case one of the field facets are guided on to the object field via the associated pupil facet. The field facet mirror not only includes a plurality of basic illumination field facets which provide a basic illumination of the object field via associated basic illumination pupil facets, but also includes a plurality of correction illumination field facets which provide for a correction of the illumination of the object field via associated correction illumination pupil facets. The result is an illumination optics which allows unwanted variations of illumination parameters, for instance an illumination intensity distribution or an illumination angle distribution, to be corrected across the object field.
Abstract:
A projection illumination installation for EUV microlithography includes an EUV synchrotron light source for producing EUV used light. An object field is illuminated with the used light using illumination optics. The object field is mapped into an image field using projection optics. A scanning device is used to illuminate the object field by deflecting the used light in sync with a projection illumination period. The result is a projection illumination installation in which the output power from an EUV synchrotron light source can be used as efficiently as possible for EUV projection illumination.
Abstract:
An illumination system for a microlithography projection exposure apparatus generally includes an optical element formed of a plurality of facet elements. The facet elements are arranged such that, for each facet element, a proportion of the side surfaces of the facet element is at a certain distance from the side surfaces of all the other facet elements. This gives rise to interspaces between the facet elements which are not used optically. The interspaces can be used for simpler mounting of the facet elements or for fitting mechanical components, such as actuators. A collector is used to efficiently illuminate such an optical element. The collector includes a plurality of segments that are in part non-continuous. Alternatively, however, continuous segments with a bend are also possible.
Abstract:
A mirror for use in a projection exposure apparatus is described. The mirror has a main surface extending beyond an outline of an optical surface of the main surface. The optical surface has a roughness of less than 1 nm rms, and the outline of the optical surface includes a portion where the main surface extends beyond the optical surface by less than 0.2 mm. Manufacturing the mirror may involve polishing the optical surface in regions of the main surface extending beyond the optical surface and removing material of the substrate carrying a portion of the surface extending beyond the optical surface.
Abstract:
There is provided an illumination system for microlithography. The illumination system includes an optical element having a plurality of field raster elements, a plane in which a field is illuminated, and a grazing incidence mirror situated in a light path from the optical element to the plane, after the optical element. The illumination system has no other grazing incidence mirror in the light path, after the optical element and before the plane.