Abstract:
Techniques described herein may allow for the seamless and efficient use of multiple radio access technologies (“RATs”), such as 4G and 5G RATs. A virtualized base station may be used, which processes traffic sent to and/or received from a user equipment (“UE”) via 4G and 5G RATs. The virtualized base station may include separate protocol stacks for the separate RATs. One RAT may be the “master” RAT, and the protocol stack for the master RAT may communicate with a core network via a General Packet Radio (“GPRS”) Tunneling Protocol (“GTP”) tunnel. In the downlink direction, the virtual base station may determine via which RAT traffic, received from the core network, should be sent to the UE by identifying quality of service class indicators (“QCIs”) associated with the downlink traffic.
Abstract:
A fixed wireless access device may include a memory configured to store instructions and a processor configured to execute the instructions to activate a Fifth Generation (5G) scanning mode and scan for 5G wireless signals associated with a provider that is also associated with the fixed wireless access device. The processor may be further configured to detect a 5G wireless signal associated with the provider; determine a signal strength for the detected 5G wireless signal; and generate an indication of the determined signal strength to be displayed in a user interface associated with the fixed wireless access device.
Abstract:
A Component Carrier (“CC”) controller may monitor usage, by a set of user equipment (“UE”), of radio resources provided by an access node, of a wireless telecommunications network, that utilizes one or more CCs. The CC controller may optimize coverage and/or capacity of the access node by adjusting the number of CCs that are active at the access node, and the power that is allocated for each active CC in response to monitoring radio resource usage that exceeds one or more first thresholds, or monitoring radio resource usage that is below one or more second thresholds.
Abstract:
A computer device may include a memory storing instructions and a processor configured to execute the instructions to select a broadcast method for a wakeup signal for a wireless communication device; instruct a base station to broadcast the wakeup signal using the selected broadcast method; and provide information identifying the selected broadcast method to the wireless communication device. The processor may be further configured to receiving a wakeup request from a machine-type communication interworking function (MTC-IWF) device; map the received wakeup request to a wakeup signature beacon signal associated with the wireless communication device; and instruct the base station to transmit a wakeup signature beacon signal to the wireless communication device based on the received wakeup request.
Abstract:
Techniques described herein may allow for the seamless and efficient use of multiple radio access technologies (“RATs”), such as 4G and 5G RATs. A virtualized base station may be used, which processes traffic sent to and/or received from a user equipment (“UE”) via 4G and 5G RATs. The virtualized base station may include separate protocol stacks for the separate RATs. One RAT may be the “master” RAT, and the protocol stack for the master RAT may communicate with a core network via a General Packet Radio (“GPRS”) Tunneling Protocol (“GTP”) tunnel. In the downlink direction, the virtual base station may determine via which RAT traffic, received from the core network, should be sent to the UE by identifying quality of service class indicators (“QCIs”) associated with the downlink traffic.
Abstract:
When connected to an alternate network, a user device may search for a preferred network when the user device is actively transmitting traffic via the alternate network. As such, the user device may search for, and potentially locate, the preferred network faster than when the user device waits to search for the preferred network after becoming idle. While active, the user device may search for the preferred network for a relatively short duration, in order to limit the amount of time that data flow transmission is interrupted when searching for the preferred network. The user device may search for the preferred network based on a list of search parameters. The list of search parameters may be prioritized differently based on whether the user device is active or idle, and may be based on a quantity of times that the user device has searched for the preferred network.
Abstract:
A device may determine that a first antenna of a user equipment is transmitting at a maximum transmission power value, and may determine a received signal power value associated with a wireless signal transmitted via the first antenna of the user equipment. The device may compare a target signal power value and the received signal power value, and may determine that a switching threshold value is satisfied. The device may provide, to the user equipment, an instruction to transmit via a second antenna based on determining that the switching threshold value is satisfied.
Abstract:
Carrier aggregation may be performed using licensed (e.g., LTE) and unlicensed (e.g., LTE-U) spectrum in which the amount of data associated with users may be separately tracked for the licensed and unlicensed communications. The tracking for the amount of licensed and unlicensed data may be performed at base stations associated with a wireless network. In some implementations, a base station may maintain a number of profiles that each indicate how and/or when carrier aggregation is to be divided or performed.
Abstract:
A base station may establish a wireless connection with a mobile device. The base station may determine an index value for each of a plurality of carriers that may be used for the wireless connection. The index value for a respective carrier may be determined based on a quantity of idle mode devices using the respective carrier in an idle mode. The base station may generate a carrier order that indicates a priority for each of the plurality of frequencies. The carrier order may be generated based on sorting the plurality of carriers based on the index values for the plurality of carriers. The base station may send order information indicating the carrier order to the mobile device via the wireless connection.
Abstract:
A system may receive a request to receive a particular quality of service level for traffic flow between a user device and an over-the-top application server that provides an over-the-top application service. The over-the-top application server may be outside of a service provider network. The system may determine that the user device is to receive the particular quality of service level for the over-the-top application service based on receiving the request. The system may cause the traffic flow to receive the particular quality of service level based on determining that the user device is to receive the particular quality of service level. The traffic flow may be transmitted using the service provider network. The system may determine usage information associated with the traffic flow, where the usage information identifies the user device and the particular quality of service level. The system may provide the usage information.