Abstract:
A catalytic device comprises a mixed structure of photocatalyst and silica. The mixed structure may be comprised of alternating layers of photocatalyst and silica, a layer having a uniform mixture of photocatalyst particles and silica particles, or a layer having a graded mixture of photocatalyst particles and silica particles.
Abstract:
A porous metal oxide is formed by creating a metal oxide material with a hydrolysis reaction in solution. The hydrolysis reaction or reaction products of a metal oxide precursor react simultaneously or in conjunction with a metal salt or a disassociation species of a metal salt. The metal oxide material is conditioned, and is refined to produce metal oxide particles having a porous structure containing crystallites.
Abstract:
A photocatalytic device for reacting with volatile organic compounds includes a photocatalyst and at least one additive, such as hafnium oxide and zirconium oxide, that is capable of forming a stable silicate with silicon dioxide. The additive reacts with volatile silicon-containing compounds to form stable silicate compounds. As a result, the silicon-containing compounds are unavailable for deactivation of the photocatalyst.
Abstract:
A photocatalyst system for volatile organic compounds with two parts that include a photocatalyst layer on a substrate and a porous overlayer. The photocatalyst layer is reactive with volatile organic compounds when UV light is projected on it. The overlayer is situated on the photocatalyst layer. The overlayer is UV transparent and has an interconnected pore network that allows contaminated air to pass through the overlayer. The size and the shape of the interconnected pores acts to selectively exclude certain contaminants that can deactivate the photocatalyst.
Abstract:
A fuel system for an energy conversion device includes a deoxygenator system with an oxygen permeable membrane having a textured surface. A sweep gas and/or vacuum maintains an oxygen concentration differential across the membrane to deoxygenate the fuel. The textured surface increases the surface area of the oxygen permeable membrane. The textured surface of the oxygen permeable membrane is fabricated by pressing the textured surface into the oxygen permeable membrane with a microreplication-based tooling system. Another fabrication method presses the textured surface into a sacrificial film and the oxygen permeable membrane is then formed upon the sacrificial film to transfer the textured surface to the oxygen permeable membrane and the sacrificial film is then subsequently removed. Another fabrication method applies additional material to the oxygen permeable membrane through a porous sacrificial film.
Abstract:
A refractory metal composite article includes a refractory metal ceramic section and a refractory metal ceramic coating that together form a porous matrix. A solid filler is within pores of the porous matrix to, for example, reduce a porosity of the refractory metal composite article.
Abstract:
A brake assembly and a method for manufacturing a brake assembly are provided. The brake assembly includes a brake pad affixed to a substrate. The brake pad extends from the substrate to a brake pad friction surface, and includes abradable cellular metal foam with the hardened ceramic particles.
Abstract:
A composite article includes a substrate and a powder-derived composite coating on the substrate. The composite coating includes discrete regions of a first material and discrete regions of a second material. At least one of the first material or the second material is a chemical precursor.
Abstract:
A method of making a component comprises producing a layer of sheet material including an aperture over a movable support. An insulating material is deposited in a first portion of the aperture to form an insulating coating with one or more pockets. A conductive material is deposited in the one or more pockets. Heat and pressure are applied to the layer and the movable support is lowered by a thickness of the layer. The steps are repeated to form a laminated stack defining the component. In some embodiments, the laminated stack of sheet materials forms an induction machine.
Abstract:
A photocatalytic device for reacting with volatile organic compounds includes a photocatalyst and at least one additive, such as hafnium oxide and zirconium oxide, that is capable of forming a stable silicate with silicon dioxide. The additive reacts with volatile silicon-containing compounds to form stable silicate compounds. As a result, the silicon-containing compounds are unavailable for deactivation of the photocatalyst.