摘要:
A mask that is capable of forming a thin-film transistor (TFT) with improved electrical characteristics is presented. The mask includes a drain mask pattern, a source mask pattern and a light-adjusting pattern. The drain mask pattern blocks light for forming a drain electrode. The source mask pattern blocks light for forming a source electrode and faces the drain mask pattern. A distance between the drain and source mask patterns is no more than the resolution of an exposing device. The light-adjusting pattern is formed between end portions of the source mask pattern and the drain mask pattern to block at least some light from entering a space between the source and drain mask patterns.
摘要:
Embodiments of the present invention relate to a thin film transistor and a manufacturing method of a display panel, and include forming a gate line including a gate electrode on a substrate, forming a gate insulating layer on the gate electrode, forming an intrinsic semiconductor on the gate insulating layer, forming an extrinsic semiconductor on the intrinsic semiconductor, forming a data line including a source electrode and a drain electrode on the extrinsic semiconductor, and plasma-treating a portion of the extrinsic semiconductor between the source electrode and the drain electrode to form a protection member and ohmic contacts on respective sides of the protection member. Accordingly, the process for etching the extrinsic semiconductor and forming an inorganic insulating layer for protecting the intrinsic semiconductor may be omitted such that the manufacturing process of the display panel may be simplified, manufacturing cost may be reduced, and productivity may be improved.
摘要:
A mask includes a transparent substrate, a light-blocking layer and a halftone layer. The light-blocking layer includes a source electrode pattern portion including a first electrode portion, a second electrode portion and a third electrode portion, and a drain electrode pattern portion disposed between the second electrode portion and the third electrode portion. The halftone layer includes a halftone portion corresponding to a spaced-apart portion between the source electrode pattern portion and the drain electrode pattern portion, and a dummy halftone portion more protrusive than ends of the second electrode portion and the third electrode portion. Thus, a photoresist pattern corresponding to a channel portion of a thin film transistor (TFT) may be formed with a uniform thickness, to thereby prevent an excessive etching of the channel portion.
摘要:
Embodiments of the present invention relate to a thin film transistor and a manufacturing method of a display panel, and include forming a gate line including a gate electrode on a substrate, forming a gate insulating layer on the gate electrode, forming an intrinsic semiconductor on the gate insulating layer, forming an extrinsic semiconductor on the intrinsic semiconductor, forming a data line including a source electrode and a drain electrode on the extrinsic semiconductor, and plasma-treating a portion of the extrinsic semiconductor between the source electrode and the drain electrode to form a protection member and ohmic contacts on respective sides of the protection member. Accordingly, the process for etching the extrinsic semiconductor and forming an inorganic insulating layer for protecting the intrinsic semiconductor may be omitted such that the manufacturing process of the display panel may be simplified, manufacturing cost may be reduced, and productivity may be improved.
摘要:
A thin film transistor substrate includes a base substrate, a gate electrode, a gate insulating layer, a surface treating layer, an active layer, a source electrode and a drain electrode. The gate electrode is formed on the base substrate. The gate insulating layer is formed on the base substrate to cover the gate electrode. The surface treating layer is formed on the gate insulating layer by treating the gate insulating layer with a nitrogen-containing gas to prevent leakage current. The active layer is formed on the surface treating layer to cover the gate electrode. The source electrode and the gate electrode that are spaced apart from each other by a predetermined distance are formed on the active layer.
摘要:
The present invention provides a manufacturing method of a thin film transistor array panel, which includes forming a gate line on a substrate; forming a gate insulating layer, a semiconductor layer, and an ohmic contact on the gate line; forming a first conducting film including Mo, a second conducting film including Al, and a third conducting film including Mo on the ohmic contact; forming a first photoresist pattern on the third conducting film; etching the first, second, and third conducting films, the ohmic contact, and the semiconductor layer using the first photoresist pattern as a mask; removing the first photoresist pattern by a predetermined thickness to form a second photoresist pattern; etching the first, second, and third conducting films using the second photoresist pattern as a mask to expose a portion of the ohmic contact; and etching the exposed ohmic contact using a Cl-containing gas and a F-containing gas.
摘要:
A display substrate includes a gate line extending in a first direction on a base substrate, a data line on the base substrate and extending in a second direction crossing the first direction, a gate insulating layer on the gate line, a thin-film transistor and a pixel electrode. The thin-film transistor includes a gate electrode electrically connected the gate line, an oxide semiconductor pattern, and source and drain electrodes on the oxide semiconductor pattern and spaced apart from each other. The oxide semiconductor pattern includes a first semiconductor pattern including indium oxide and a second semiconductor pattern including indium-free oxide. The pixel electrode is electrically connected the drain electrode.
摘要:
A TFT display panel having a high charge mobility and making it possible to obtain uniform electric characteristics with respect to a large-area display is provided as well as a manufacturing method thereof. A TFT display panel includes a gate electrode formed on an insulation substrate, a first gate insulting layer formed of SiNx on the gate electrode, a second gate insulting layer formed of SiOx on the first gate insulting layer, an oxide semiconductor layer formed to overlap the gate electrode and having a channel part, and a passivation layer formed of SiOx on the oxide semiconductor layer and the gate electrode, and the passivation layer includes a contact hole exposing the drain electrode. The contact hole has a shape in which the passivation layer of a portion directly exposed together with a metal occupies an area smaller than the upper passivation layer.
摘要:
In an operation control apparatus and a method thereof, the compressor can be protected from overloading through a current control device instead of an OLP (Over Load Protector) and a PTC thermistor (Positive Temperature Coefficient thermistor). The operation control apparatus includes: a stroke estimated unit for estimating a stroke of the compressor on the basis of a current and a voltage applied to an interior motor of the compressor and a motor constant of the interior motor; a control unit for generating a control signal for varying a stroke of the compressor on the basis of the estimated stroke value and a preset stroke reference value; and a current control means being turned on/off so as to vary a stroke voltage applied to the interior motor of the compressor.
摘要:
A TFT display panel having a high charge mobility and making it possible to obtain uniform electric characteristics with respect to a large-area display is provided as well as a manufacturing method thereof. A TFT display panel includes a gate electrode formed on an insulation substrate, a first gate insulting layer formed of SiNx on the gate electrode, a second gate insulting layer formed of SiOx on the first gate insulting layer, an oxide semiconductor layer formed to overlap the gate electrode and having a channel part, and a passivation layer formed of SiOx on the oxide semiconductor layer and the gate electrode, and the passivation layer includes a contact hole exposing the drain electrode. The contact hole has a shape in which the passivation layer of a portion directly exposed together with a metal occupies an area smaller than the upper passivation layer.