摘要:
A carbonaceous preform is infiltrated with a silicon melt alloyed with at least one element which is substantially insoluble in silicon carbide and which forms refractory phases. The resulting silicon carbide composite has substantially no free silicon. Silicides of the alloying elements are a suitable refractory phase. Suitable alloying elements which form refractory silicides include Mo, W, Re, Hf, Zr, Cr, B, and Ti. The carbonaceous preform may include graphite particulates, carbon particulates, porous carbon skeletons, carbon-carbon composites, carbon fibers, and graphite fibers. Particulates may be incorporated into the preform for the purpose of improving mechanical properties. Suitable particulates include refractory metals, carbides, nitrides, borides, silicides, and oxides. Fiber-reinforced composites can be produced by incorporating whiskers, chopped fibers, or continuous fibers of a refractory material into the preform. The refractory phase in the composite has a beneficial effect on the high temperature mechanical properties, such as the hardness, strength, toughness, and creep resistance of the silicon carbide composites.
摘要:
Cations such as La, Sr, Cu, or Y, Ba, Cu are dissolved in an organic solvent such as ethylene glycol and citric acid. The solution is formed into either a free-standing or supported film which is dried to produce a solid organic polymer. The polymer is then fired in an oxidizing atmosphere (pyrolysis) to obtain the superconducting oxide. It is preferred that the film be spin coated on a substrate to produce uniform coatings of thicknesses less than one micrometer. The resulting superconducting oxide film is fully dense, of controlled microstructure, very homogeneous in composition and suitable for demanding electronic device purposes or as coatings to form superconducting wires or other current carrying components.
摘要:
A lithium-ion battery is provided that has a fast charge and discharge rate capability and low rate of capacity fade during high rate cycling. The battery can exhibit low impedance growth and other properties allowing for its use in hybrid electric vehicle applications and other applications where high power and long battery life are important features.
摘要:
An energy storage device includes a first electrode comprising a first material and a second electrode comprising a second material, at least a portion of the first and second materials forming an interpenetrating network when dispersed in an electrolyte, the electrolyte, the first material and the second material are selected so that the first and second materials exert a repelling force on each other when combined. An electrochemical device, includes a first electrode in electrical communication with a first current collector; a second electrode in electrical communication with a second current collector; and an ionically conductive medium in ionic contact with said first and second electrodes, wherein at least a portion of the first and second electrodes form an interpenetrating network and wherein at least one of the first and second electrodes comprises an electrode structure providing two or more pathways to its current collector.
摘要:
Nanoscale ion storage materials are provided that exhibit unique properties measurably distinct from their larger scale counterparts. For example, the nanoscale materials can exhibit increased electronic conductivity, improved electromechanical stability, increased rate of intercalation, and/or an extended range of solid solution. Useful nanoscale materials include alkaline transition metal phosphates, such as LiMPO4, where M is one or more transition metals. The nanoscale ion storage materials are useful for producing devices such as high energy and high power storage batteries, battery-capacitor hybrid devices, and high rate electrochromic devices.
摘要:
An energy storage device includes a first electrode comprising a first material and a second electrode comprising a second material, at least a portion of the first and second materials forming an interpenetrating network when dispersed in an electrolyte, the electrolyte, the first material and the second material are selected so that the first and second materials exert a repelling force on each other when combined. An electrochemical device, includes a first electrode in electrical communication with a first current collector; a second electrode in electrical communication with a second current collector; and an ionicaily conductive medium in ionic contact with said first and second electrodes, wherein at least a portion of the first and second electrodes form an interpenetrating network and wherein at least one of the first and second electrodes comprises an electrode structure providing two or more pathways to its current collector.
摘要:
Electroactive compositions are disclosed for use in lithium ion battery electrodes. The compositions, such as multifunctional mixed metal olivines, provide an electrochemical cell having a plurality of open circuit voltages at different states of charge. The compositions afford improved state-of-charge monitoring, overcharge protection and/or overdischarge protection for lithium ion batteries.
摘要:
Nanoscale ion storage materials are provided that exhibit unique properties measurably distinct from their larger scale counterparts. For example, the nanoscale materials can exhibit increased electronic conductivity, improved electromechanical stability, increased rate of intercalation, and/or an extended range of solid solution. Useful nanoscale materials include alkaline transition metal phosphates, such as LiMPO4, where M is one or more transition metals. The nanoscale ion storage materials are useful for producing devices such as high energy and high power storage batteries, battery-capacitor hybrid devices, and high rate electrochromic devices.
摘要:
Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.
摘要:
A patch pump device generally includes at least one fluid source, a fluid communicator, and an electrochemical actuator. The fluid communicator is in fluid communication with the fluid source. The electrochemical actuator is operative to cause fluid to be delivered from the fluid source into the fluid communicator.