摘要:
An over-current protection device is disposed on a circuit board and configured to protect a battery. The over-current protection device includes a resistive device, at least one insulation layer and a weld electrode layer. The resistive device exhibits positive temperature coefficient behavior. The insulation layer has a thickness of at least 0.03 mm. The weld electrode layer is configured to weld a strip interconnect member to electrically coupled to the battery, and has a thickness of at least 0.03 mm. The insulation layer and the resistive device are disposed between the weld electrode layer and the circuit board. The circuit board, the resistive device and the weld electrode layer are electrically coupled in series. The association of the resistive device and the weld electrode layer has a thermal mass capable of withstanding welding the strip interconnect member without significant damage to the over-current protection device.
摘要:
An over-current protection device is of an approximately quadrilateral structure with upper and lower surfaces, first and second side surfaces, in which the second side surface contains a bevel. The device comprises first and second electrodes, a first PTC material layer, and first and second conductive connecting members. The first electrode is formed on the upper or lower surface. The second electrode is formed on the lower surface and is insulated from the first electrode. The first PTC material layer extends along the upper surface and has a first surface electrically coupled to the first electrode, and a second surface electrically coupled to the second electrode. The first conductive connecting member is formed on the first side surface and is electrically coupled to the first electrode. The second conductive connecting member is formed on the second side surface and extends along the bevel to electrically couple to the second electrode.
摘要:
An over-current protection device includes a first conductive member, a second conductive member, a resistive device and a temperature sensing switch. The first conductive member includes a first electrode foil and a second electrode foil those are formed on a same plane. The resistive device is laminated between the first conductive member and the second conductive member and exhibits positive temperature coefficient or negative temperature coefficient behavior. The temperature sensing switch can switch the first electrode foil and the second electrode foil between electrically conductive status and current-restriction status, e.g., open circuit, according to temperature variation. The threshold temperature of the temperature sensing switch is lower than the trip temperature of the resistive device.
摘要:
An over-current protection device includes a first electrode layer, a second electrode layer, and a resistance material disposed between the first and second electrode layers. The first electrode layer includes a first groove pattern formed on and through the first electrode layer. The first groove pattern is configured to separate the first electrode layer into a plurality of connected regions. The second electrode layer includes a second groove pattern formed on and through the second electrode layer. The second groove pattern is configured to separate the second electrode layer into a plurality of connected regions. The first and second groove patterns are further configured to be formed in an interlaced manner that when the first and second electrode layers are overlapped, the first and second groove patterns form a plurality of independent regions, which divide the resistance material into a plurality of electrically isolated and parallel connected units.
摘要:
A variable impedance composition according to this aspect of the present invention comprises a conductive powder in an amount from 10% to 30% of the weight of the variable impedance composition, a semi-conductive power in an amount from 30% to 90% of the weight of the variable impedance composition, and an insulation adhesive in an amount from 3% to 50% of the weight of the variable impedance composition. According to one embodiment of the present invention, the variable impedance material presents a high resistance at a low applied voltage and a low resistance at a high applied voltage. As the variable impedance material is positioned in a gap between two conductors of an over-voltage protection device, the over-voltage protection device as a whole presents a high resistance to a low voltage applied across the gap and a low resistance to a high voltage applied across the gap.
摘要:
A heat dissipation material comprises (1) fluorine-containing crystalline polymer having a melting point higher than 150° C., with a weight percentage of around 15-40%; (2) heat conductive fillers dispersed in the fluorine-containing crystalline polymer with a weight percentage of around 60-85%; and (3) coupling agent of 0.5-3% of the heat conductive fillers by weight and having a chemical formula of: where R1, R2 and R3 are alkyl group CaH2a+1, a≧1; X and Y are selected from hydrogen, fluorine, chorine, and alkyl group; and n is a positive integer.