摘要:
A semiconductor apparatus and method for producing shallow trench isolation. The method includes the steps providing a semiconductor substrate member fabricated having a thin barrier oxide layer on which are fabricated a plurality of spaced apart silicon nitride pads. The regions between the spaced apart nitride pads delineate U-shaped regions for forming shallow isolation trenches and are layered with silicon oxide and polysilicon. The U-shaped regions provide a buffer region of oxide and polysilicon material adjacent opposing silicon nitride pads that prevent erosion of the nitride during etch formation of the isolation trench. The polysilicon is further etched to form a wider, second U-shaped region having sloped sidewalls that provide opposing spacer-forming buffer material that facilitates forming a V-shaped isolation trench region into the semiconductor substrate member a predetermined depth without eroding the silicon nitride pads. The V-shaped trench is subsequently filled with silicon dioxide that is grown by a hot thermal oxide process. The upper portion of the V-shaped isolation trench may be further filled with deposited silicon dioxide followed by a chemical mechanical polishing process.
摘要:
A P-type dopant is implanted into a substrate region 94 under a select drain gate transistor field oxide region 75 at a large tilt angle .alpha., to prevent field turn-on under the select drain gate transistor field oxide region 75 in a non-volatile memory device such as a NAND flash memory device. A substrate region 114 under a select source gate transistor field oxide region 77 can also be implanted with a P-type dopant to prevent field turn-on under the region 77 if select source gates 90 and 92 are to be supplied with a voltage in operation rather than grounded. The substrate regions 94 and 114 under both the select drain gate transistor field oxide region 75 and the select source gate transistor field oxide region 77 can be implanted with the P-type dopant using a fixed-angle ion beam 120, by rotating the wafer 124 between the step of implanting one of the substrate regions and the step of implanting the other region.
摘要:
A method of fabricating an interpolysilicon dielectric structure in a non-volatile memory includes the steps of forming a nitride layer 12 on a floating gate 10 and a high dielectric constant layer 14 on the nitride layer 12. A control gate 18 may be formed directly on the high dielectric constant layer 14, or on a thin layer 16 of an oxide or an oxynitride on the high dielectric constant layer 14.
摘要:
A method for fabricating a semiconductor device including a silicon substrate and plural silicon stacks thereon includes forming a nitride shield layer on the substrate and stacks to cover the stacks, such that the stacks are protected from loss of critical dimension during subsequent isolation trench formation and oxidation. In other words, the edge of each stack, and thus the critical dimension of the silicon layers of the stack, is protected from oxidation by the nitride shield layer.
摘要:
A one time programmable nonvolatile memory formed from metal-insulator-semiconductor cells. The cells are at the crosspoints of conductive gate lines and intersecting doped semiconductor lines formed in a semiconductor substrate.
摘要:
A floating gate memory cell's channel region (104) is at least partially located in a fin-like protrusion (110P) of a semiconductor substrate. The floating gate's top surface may come down along at least two sides of the protrusion to a level below the top (110P-T) of the protrusion. The control gate's bottom surface may also comes down to a level below the top of the protrusion. The floating gate's bottom surface may comes down to a level below the top of the protrusion by at least 50% of the protrusion's height. The dielectric (120) separating the floating gate from the protrusion can be at least as thick at the top of the protrusion as at a level (L2) which is below the top of the protrusion by at least 50% of the protrusion's height. A very narrow fin or other narrow feature in memory and non-memory integrated circuits can be formed by providing a first layer (320) and then forming spacers (330) from a second layer without photolithography on sidewalls of features made from the first layer. The narrow fin or other feature are then formed without further photolithography in areas between the adjacent spacers. More particularly, a third layer (340) is formed in these areas, and the first layer and the spacers are removed selectively to the third layer. The third layer is used as a mask to form the narrow features.
摘要:
The present disclosure provides a memory device having a cell stack and a select gate formed adjacent to the cell stack. The cell stack includes a tunneling dielectric layer, a charge storage layer, a blocking dielectric layer, a tantalum-nitride layer, and a control gate layer. When a positive bias is applied to the control gate and the select gate, negative charges are injected from a channel region of a substrate through the tunneling dielectric layer and into the charge storage layer to thereby store the negative charges in the charge storage layer. When a negative bias is applied to the control gate, negative charges are tunneled from the charge storage layer to the channel region of the substrate through the tunneling dielectric layer.
摘要:
A memory cell (110) has a plurality of floating gates (120L, 120R). The channel region (170) comprises a plurality of sub-regions (220L, 220R) adjacent to the respective floating gates, and a connection region (210) between the floating gates. The connection region has the same conductivity type as the source/drain regions (160) to increase the channel conductivity. Therefore, the floating gates can be brought closer together even though the inter-gate dielectric (144) becomes thick between the floating gates, weakening the control gate's (104) electrical field in the channel.
摘要:
A method of fabricating a semiconductor device having a triple LDD (lateral diffused dopants) structure is disclosed. This fabrication method requires a single implant process, leading to reduction in fabrication costs and fabrication time. Moreover, this fabrication method increases the surface area of the gate structure of the semiconductor device that is available for silicide to be formed, leading to lower gate resistance.
摘要:
A method of erasing bits in a multi-level cell flash memory array is described. The method includes applying over-erase verification after each erase pulse. If cells verify as over-erased, a ramped over-erase correction pulse is applied. The voltage of each over-erase correction pulse is incrementally greater than the previous pulse, until all bits in all cells pass the over-erase verification. In this way, the widths of the threshold voltage distributions of the erased bits are kept to a minimum.