Abstract:
A receiver for receiving a stream of symbols clocked at a first rate, and providing the symbols at a second clock rate uses two buffers. Incoming symbols are written to a first dual clock buffer at the first rate, and read from the first and second buffer, at the second rate. Underflow of the first buffer is signaled to the second buffer, thereby avoiding the need to insert defined clock compensation symbols at the second rate. Symbols received at the second buffer while underflow is signaled may be ignored. Conveniently, the second buffer may also be used to align symbol data across multiple symbol streams using periodic alignment symbols. An exemplary embodiment conforms to the PCI Express standard.
Abstract:
A method for displaying images on multiple monitors with different refresh rates is disclosed. To prevent screen tearing, the surface containing image data is not released when the access by the master monitor is completed until the slave monitor or monitors finish access. To synchronize images with a predefined playback speed, the surface containing a new image received from the application is not flipped onto the screens until receiving a predefined synchronization indicator.
Abstract:
To receive new services including audio or video content for presentation by a cable-compatible digital television or other digital audio/video receiver, a module may be connected to the HOST-POD interface of the digital television. The module has a receiver for receiving audio or video content in a first compression format, a transcoder for converting said audio or video content from the first compression format into a second, different compression format, and a controller for transmitting the audio or visual content in the second compression format to the digital television over a HOST-POD interface. By using such a module, front-end components of the digital television may be bypassed while back-end components may be utilized to decompress and present the content. The module may be a PC card or smart card for example.
Abstract:
An apparatus and method utilizes system memory as backing stores so that local graphics memory may be oversubscribed. Surfaces may be paged in and out of system memory based on the amount of usage of the surfaces. The apparatus and method also prioritizes surfaces among different tiers of local memory (e.g. frame buffer), non-local memory (e.g. page locked system memory), and system memory backing stores (e.g. pageable system memory) locations based on predefined criteria and runtime statistics relating to the surfaces. As such, local memory may be, for example, expanded without extra memory costs such as adding a frame buffer memory to allow graphics applications to effectively use more memory and run faster.
Abstract:
When a physical change (e.g. a change in screen orientation) is detected at a display device that is attached to a graphics subsystem of a host device and on which images are currently being displayed, a hot plug detect signal may be provided to the graphics subsystem. In response, the graphics subsystem may adjust its processing of images to account for the physical change (e.g. the image may be rotated). The display device may communicate data representative of the physical change to the graphics subsystem. The graphics subsystem may use this data to determine how its processing of images should be adjusted. The data may be communicated over an I2C bus regardless of whether a hot plug detect signal is provided.
Abstract:
A supply voltage management system and method for an integrated circuit (IC) die are provided. The supply voltage management system includes one or more temperature sensing elements located on the IC die and configured to sense temperature of the die and to output a sensed temperature value for the die. A dynamic voltage controller is located on the die and is configured to receive the sensed temperature value for the die and to identify a technology process category of the die. Based on the sensed temperature value and the identified technology process category of the die, the dynamic voltage controller adjusts an output voltage to at least one circuit of the die.
Abstract:
A localized refrigerator apparatus for a thermal management device includes a chamber having an evaporation portion and a condensation portion. The evaporation portion is adapted to thermally couple to a heat generating device. A fluid housed in the chamber and is adapted to facilitate heat transfer between the evaporation portion and the condensation portion by an evaporation and condensation cycle. The thermal management device also includes a thermoelectric cooler thermally coupled to the condensation portion.
Abstract:
A method for displaying images on multiple monitors with different refresh rates is disclosed. To prevent screen tearing, the surface containing image data is not released when the access by the master monitor is completed until the slave monitor or monitors finish access. To synchronize images with a predefined playback speed, the surface containing a new image received from the application is not flipped onto the screens until receiving a predefined synchronization indicator.
Abstract:
A computing device includes first and second graphics adapters. A graphics processor of the first graphics adapter acts as a master graphics processor, while a second graphics adapter acts as a slave. The master graphics processor renders graphics to be displayed on multiple separate displays within memory of the first graphics adapter. Images to be displayed on one of the displays are transferred to memory used by the second graphics adapter. The display interface of the second graphics adapter presents images within the memory of the second graphics adapter on at least one of the multiple displays. In this way, device electronics forming the display interface, as well as ports of the second adapter, acting as a slave, may be utilized. In one embodiment, an application creates a single larger image, rendered within the memory of the first graphics adapter. The larger image is then presented as the first and second smaller images on the multiple displays. In this way, an end user sees the multiple images as a single large image across the multiple displays.
Abstract:
Apparatus and methods are disclosed for controlling the memory controller and, in particular, controlling signaling of the memory controller to a memory via memory interface during a static screen condition. An apparatus includes static image detection logic that is configured to detect when image data being displayed by a display controller is static and to communication detection of static image data to the display controller. The apparatus also includes control logic within the display controller responsive to the static image detection logic, where the control logic is configured to detect a level of a line buffer within the display controller and to send a signal to a memory controller directing the memory controller to issue a signal to a memory to enter a self-refresh mode, thereby turning off at least one memory clocking circuit within the memory controller. A corresponding method is also disclosed.