Abstract:
A receiver may comprise: a symbol receiver configured to receive a first modulated symbol at a first resolution and thereafter a second modulated symbol at a second resolution greater than the first resolution; an output path coupled to the symbol receiver and configured to forward the first modulated symbol; a decision device coupled to the symbol receiver and configured to determine a most probable symbol represented by the first modulated symbol; a phase detector coupled to the decision device and configured to compare the first modulated symbol and the most probable symbol to generate a phase error value; and a phase modifier coupled to the decision device and configured to determine a phase correction value based on the phase error value and to adjust the phase of the second modulated symbol based on the phase correction value.
Abstract:
A terminal of an exemplary transmitting device is configured to receive an initial clock signal. A first phase lock loop is configured to lock a phase of an initial periodic signal with a phase of the initial clock signal. A transmitting data block interface is configured to provide the plurality of data blocks with samples of the initial periodic signal to a receiving device. An exemplary receiving device includes a receiving data block interface configured to receive the plurality of data blocks. A second phase lock loop is configured to recreate the initial periodic signal and lock a phase of the recreated periodic signal with a phase of the samples of the initial periodic signal. The clock signal generator is configured to recreate and provide the initial clock signal. The recreated clock signal is synchronized to the initial clock signal based on the phase of the recreated periodic signal.
Abstract:
In various embodiments, a method comprises defining a plurality of translating references for an object, generating a common information model (CIM) with a processor of a system, the CIM comprising one or more functional object attributes of the object, generating a first instantiation of a user information model (UIM), the first instantiation of the UIM comprising one or more user-associated attributes of the object, interfacing with the CIM using the first instantiation of the UIM, and translating one or more user-associated attributes of the first instantiation of the UIM to the one or more functional object attributes of the CIM using the plurality of translating references.
Abstract:
A first layer one link aggregation master comprises a first port coupled to receive customer traffic; a first channel; a second channel; an aggregation engine coupled to the first and second channels; a first switch circuit coupled to the first port and to the first channel, and configured to communicate the customer traffic from the first port over the first channel to the aggregation engine, the aggregation engine including a splitter circuit configured to use layer one information to segment at least a portion of the customer traffic into a first virtual container and a second virtual container, the aggregation engine further including an encapsulation circuit configured to encapsulate the second virtual container using Ethernet standards for transport over the second channel; a radio access card configured to generate an air frame based on the first virtual container for wireless transmission over a first wireless link of a link aggregation group to the receiver; and a second switch circuit coupled to the second channel, and configured to communicate the Ethernet-encapsulated second virtual container over an Ethernet cable to a slave for wireless transmission over a second wireless link of the link aggregation group to the receiver.
Abstract:
A system and method to transmit frames from a first node to a second node over a plurality of radio links comprising a classifier to classify said frames according to one of a plurality of flow and a sequence number within said one of said plurality of flow and adding said flow and sequence number in a header of said classified frame a splitter receiving said classified frames from said classifier and distributing said classified frames on one of said plurality of radio links for transmission to said second node, a joiner receiving said classified frames and reordering them using an indexed sequence queue corresponding to each of said plurality of flows, a timer for waiting for frames missing in the sequence in one of said indexed sequence queue, wherein when said timer expires, if said frame has not arrived it is deemed lost and a forwarder to extract frames from said sequence queue to forward.
Abstract:
Disclosed are wireless communications systems including implementation of an adaptive distributed configuration of base stations. The base stations use an inter-base station protocol to exchange configuration data for use in configuring the base stations according to an identical solution independently determined by each of the base stations.
Abstract:
A first layer one link aggregation master comprises a first port coupled to receive customer traffic; a first channel; a second channel; an aggregation engine coupled to the first and second channels; a first switch circuit coupled to the first port and to the first channel, and configured to communicate the customer traffic from the first port over the first channel to the aggregation engine, the aggregation engine including a splitter circuit configured to use layer one information to segment at least a portion of the customer traffic into a first virtual container and a second virtual container, the aggregation engine further including an encapsulation circuit configured to encapsulate the second virtual container using Ethernet standards for transport over the second channel; a radio access card configured to generate an air frame based on the first virtual container for wireless transmission over a first wireless link of a link aggregation group to the receiver; and a second switch circuit coupled to the second channel, and configured to communicate the Ethernet-encapsulated second virtual container over an Ethernet cable to a slave for wireless transmission over a second wireless link of the link aggregation group to the receiver.
Abstract:
An example method comprises receiving, by a first PHY of a first transceiver, a timing packet, timestamping, by the first transceiver, the timing packet and providing the timing packet to a first intermediate node, determining a first offset between the first intermediate node and the first transceiver, updating a first field within the timing packet with the first offset between the first intermediate node and the first transceiver, the offset being in the direction of the second transceiver, receiving the timing packet by a second transceiver, the timing packet including the first field, information within the first field being at least based on the first offset, determining a second offset between the second transceiver and an intermediate node that provided the timing packet to the second transceiver and correcting a time of the second transceiver based on the information within the first field and the second offset.
Abstract:
An example method comprises receiving, by a first PHY of a first transceiver, a timing packet, timestamping, by the first transceiver, the timing packet and providing the timing packet to a first intermediate node, determining a first offset between the first intermediate node and the first transceiver, updating a first field within the timing packet with the first offset between the first intermediate node and the first transceiver, the offset being in the direction of the second transceiver, receiving the timing packet by a second transceiver, the timing packet including the first field, information within the first field being at least based on the first offset, determining a second offset between the second transceiver and an intermediate node that provided the timing packet to the second transceiver and correcting a time of the second transceiver based on the information within the first field and the second offset.
Abstract:
An example system comprising a first transceiver configured to receive a request airframe from a second transceiver over a wireless link, the request airframe including a first time indication indicating a first time TS1, a second time indication indicating a second time TS2 that the request airframe was received, generate a respond airframe and including a third time indication indicating a third time TS3 that the respond airframe is transmitted to the second transceiver, transmit the respond airframe to the second transceiver, provide a timestamp information request to second transceiver, receive a timestamp information response, the timestamp information response including a fourth time indication indicating a fourth time TS4, calculate a counter offset using the first time, second time, third time and fourth time as follows: counter offset = ( TS 1 + TS 4 - TS 3 - TS 2 ) 2 , calculate a phase offset based on the counter offset, and correct a phase of the first transceiver.