Abstract:
Very high frequency circuits suffer from parasitic resistances. At 60 GHz, conventional layout techniques can introduce loss into the circuit at critical locations. One critical interconnect between the output of a pre-driver and the gate of the final output stage causes 1 or 2 dB of loss due to the layout. By minimizing the number of via contacts, this conventional loss can be recovered using this new layout technique. In addition, a tap point of a via stack is used to modify the resonant characteristics of the interconnect. Finally, cross coupled devices in a resonant circuit are used to reduce the common mode noise at the expense of the common mode gain.
Abstract:
This invention eliminates the need for “capacitor coupling” or “transformer coupling,” and the associated undesirable parasitic capacitance and inductance associated with these coupling techniques when designing high frequency (˜60 GHz) circuits. At this frequency, the distance between two adjacent stages needs to be minimized. A resonant circuit in series with the power or ground leads is used to isolate a biasing signal from a high frequency signal. The introduction of this resonant circuit allows a first stage to be “directly coupled” to a next stage using a metallic trace. The “direct coupling” technique passes both the high frequency signal and the biasing voltage to the next stage. The “direct coupling” approach overcomes the large die area usage when compared to either the “AC coupling” or “transformer coupling” approach since neither capacitors nor transformers are required to transfer the high frequency signals between stages.
Abstract:
An antenna array system and a method for making the antenna system. The system includes at least two antenna elements serving as transmitter elements, and at least two antenna elements serving as receiver elements. Each of the transmitter antenna and receiver antenna elements include a pair of curved arms, wherein a first arm in the pair of curved arms is configured to be connected from a signal trace of the antenna system. The second arm in the pair of curved arms is configured to be connected to a ground plane.
Abstract:
A circuit comprises a first amplifier coupled to a first and a second node; a differential capacitive load coupled to the first and the second node, the differential capacitive load coupled between drains of transistors in a cross coupled transistor circuit; a current mirror coupled to a source of each transistor; and a capacitor coupled between the sources of the transistors. A plurality of amplifiers can be coupled to the differential capacitive load, wherein each amplifier comprises a clock-less pre-amplifier of a comparator. The amplifiers may be abutted to one another such that an active transistor of a first differential stage in a first amplifier behaves as a dummy transistor for an adjacent differential stage in a second amplifier.
Abstract:
Local oscillator (LO) leakage and Image are common and undesirable effects in typical transmitters. Typically, fairly complex hardware and algorithms are used to calibrate and reduce these impairments. A single transistor that draws essentially no dc current and occupies a very small area detects the LO leakage and Image signals. The single transistor operating as a square-law device is used to mix the signals at the input and output ports of a power amplifier. The mixed signal generated by the single transistor enables the simultaneous calibration of the LO leakage and Image Rejection.
Abstract:
A receiver comprises a Low Noise Amplifier (LNA) configured to amplify an input signal and a resonant circuit coupled to the LNA. A first switch couples current from the resonant circuit to a first capacitor integrating a first voltage, wherein the first switch is enabled with a clock signal. A second switch couples current from the resonant circuit to a second capacitor integrating a second voltage, wherein the second switch is enabled with an inverse clock signal. A differential amplifier comprises a positive input for receiving the first voltage and a negative input for receiving the second voltage in order to produce a sum and a difference frequency spectrum between a signal spectrum carried within the current and a frequency of the clock signal.
Abstract:
A circuit comprises a Sallen-Key filter, which includes a source follower that implements a unity-gain amplifier; and a programmable-gain amplifier coupled to the Sallen-Key filter. The circuit enables programmable gain via adjustment to a current mirror copying ratio in the programmable-gain amplifier, which decouples the bandwidth of the circuit from its gain settings. The programmable-gain amplifier can comprise a differential voltage-to-current converter, a current mirror pair, and programmable output gain stages. The Sallen-Key filter and at least one branch in the programmable-gain amplifier can comprise transistors arranged in identical circuit configurations.
Abstract:
A circuit comprises a first amplifier coupled to a first and a second node; a differential capacitive load coupled to the first and the second node, the differential capacitive load coupled between drains of transistors in a cross coupled transistor circuit; a current mirror coupled to a source of each transistor; and a capacitor coupled between the sources of the transistors. A plurality of amplifiers can be coupled to the differential capacitive load, wherein each amplifier comprises a clock-less pre-amplifier of a comparator. The amplifiers may be abutted to one another such that an active transistor of a first differential stage in a first amplifier behaves as a dummy transistor for an adjacent differential stage in a second amplifier
Abstract:
Local oscillator (LO) leakage and Image are common and undesirable effects in typical transmitters. Typically, fairly complex hardware and algorithms are used to calibrate and reduce these impairments. A single transistor that draws essentially no dc current and occupies a very small area detects the LO leakage and Image signals. The single transistor operating as a square-law device is used to mix the signals at the input and output ports of a power amplifier. The mixed signal generated by the single transistor enables the simultaneous calibration of the LO leakage and Image Rejection.
Abstract:
A circuit comprises a first amplifier coupled to a first and a second node; a differential capacitive load coupled to the first and the second node, the differential capacitive load coupled between drains of transistors in a cross coupled transistor circuit; a current mirror coupled to a source of each transistor; and a capacitor coupled between the sources of the transistors. A plurality of amplifiers can be coupled to the differential capacitive load, wherein each amplifier comprises a clock-less pre-amplifier of a comparator. The amplifiers may be abutted to one another such that an active transistor of a first differential stage in a first amplifier behaves as a dummy transistor for an adjacent differential stage in a second amplifier