Abstract:
Provided is a laser processing method for drilling a hole in a glass substrate with using a carbon dioxide laser, including the steps of: irradiating the laser onto a drilling position on the glass substrate from a side of the glass substrate on which a protective sheet is adhered so as to form a blind hole; removing the protective sheet from the glass substrate and performing an annealing treatment; and performing a wet-etching process on a side of the glass substrate not irradiated with the laser so as to convert the blind hole into a through hole.
Abstract:
A method of fabricating a high-density array of holes in glass is provided, comprising providing a glass piece having a front surface, then irradiating the front surface of the glass piece with a UV laser beam focused to a focal point within +/−100 μm of the front surface of the glass piece most desirably within +/−50 μm of the front surface. The lens focusing the laser has a numerical aperture desirably in the range of from 0.1 to 0.4, more desirably in the range of from 0.1 to 0.15 for glass thickness between 0.3 mm and 0.63 mm, even more desirably in the range of from 0.12 to 0.13, so as to produce open holes extending into the glass piece 100 from the front surface 102 of the glass piece, the holes having an diameter the in range of from 5 to 15 μm, and an aspect ratio of at least 20:1. For thinner glass, in the range of from 0.1-0.3 mm, the numerical aperture is desirably from 0.25 to 0.4, more desirably from 0.25 to 0.3, and the beam is preferably focused to within +/−30 μm of the front surface of the glass. The laser is desirable operated at a repetition rate of about 15 kHz or below. An array of holes thus produced may then be enlarged by etching. The front surface may be polished prior to etching, if desired.
Abstract:
Laser systems and methods insert a settling time before and after each tooling action. A peak AOD excursion generally occurs at the transition in velocity between inter-feature moves and tooling moves. This transition occurs both before tooling (on the approach to the tooling location) and after tooling (on the departure from the completed tooling location to the next location). By adding a settling delay on each end of the tooling period, the AOD excursion is allowed to settle to a lower value. This then allows higher inter-tooling velocities (for high throughput) while keeping the AOD travel excursion within the bounds of the system's AOD configuration.
Abstract:
In at least one implementation, a method for forming openings for a stitched seam in a composite panel having an outer layer, and a substrate behind the outer layer includes providing a laser beam onto the substrate, with the laser beam forming an opening through the substrate but not through the outer layer, and moving at least one of the laser or the substrate relative to the other so that a new opening can be formed that is spaced from the already formed opening. Successive openings can be formed in desired locations around the panel to facilitate subsequent panel stitching. In at least some implementations, the laser may form such openings while stitches are formed in the panel, wherein a stitch is provided in a previous opening while or nearly at the same time the laser forms a different opening for a subsequent stitch.
Abstract:
A laser processing method for forming a laser processed hole in a workpiece having a first member including a first material and a second member including a second material, the laser processed hole extending from the first member to the second member, the laser processing method including: applying a pulsed laser beam to the workpiece; using a plasma detecting means to detect the wavelength of plasma light generated by applying the pulsed laser beam to the workpiece; controlling, via a controller, a laser beam applying means according to a detection signal from the plasma detecting means; and stopping the application of the pulsed laser beam when both: (i) the light intensity detected by a first photodetector is decreased, and (ii) the light intensity detected by a second photodetector is increased to a peak value and next decreased to a given value that is slightly less than the peak value.
Abstract:
A method of fabricating a high-density array of holes in glass is provided, comprising providing a glass piece having a front surface, then irradiating the front surface of the glass piece with a UV laser beam focused to a focal point within +/−100 μm of the front surface of the glass piece most desirably within +/−50 μm of the front surface. The lens focusing the laser has a numerical aperture desirably in the range of from 0.1 to 0.4, more desirably in the range of from 0.1 to 0.15 for glass thickness between 0.3 mm and 0.63 mm, even more desirably in the range of from 0.12 to 0.13, so as to produce open holes extending into the glass piece 100 from the front surface 102 of the glass piece, the holes having an diameter the in range of from 5 to 15 μm, and an aspect ratio of at least 20:1. For thinner glass, in the range of from 0.1-0.3 mm, the numerical aperture is desirably from 0.25 to 0.4, more desirably from 0.25 to 0.3, and the beam is preferably focused to within +/−30 μm of the front surface of the glass. The laser is desirable operated at a repetition rate of about 15 kHz or below. An array of holes thus produced may then be enlarged by etching. The front surface may be polished prior to etching, if desired.
Abstract:
A method of fabricating a high-density array of holes in glass is provided, comprising providing a glass piece having a front surface, then irradiating the front surface of the glass piece with a UV laser beam focused to a focal point within +/−100 μm of the front surface of the glass piece most desirably within +/−50 μm of the front surface. The lens focusing the laser has a numerical aperture desirably in the range of from 0.1 to 0.4, more desirably in the range of from 0.1 to 0.15 for glass thickness between 0.3 mm and 0.63 mm, even more desirably in the range of from 0.12 to 0.13, so as to produce open holes extending into the glass piece 100 from the front surface 102 of the glass piece, the holes having an diameter the in range of from 5 to 15 μm, and an aspect ratio of at least 20:1. For thinner glass, in the range of from 0.1-0.3 mm, the numerical aperture is desirably from 0.25 to 0.4, more desirably from 0.25 to 0.3, and the beam is preferably focused to within +/−30 μm of the front surface of the glass. The laser is desirable operated at a repetition rate of about 15 kHz or below. An array of holes thus produced may then be enlarged by etching. The front surface may be polished prior to etching, if desired.
Abstract:
An apparatus for laser drilling including a laser beam emitter disposed within a housing having at least one laser beam outlet and at least one purge fluid outlet. At least one actuated nozzle is disposed within the housing for providing a purge fluid through the purge fluid outlet and having functional control for synchronized programmable activation patterns. Laser beam control is provided for directing a laser beam over a target surface.
Abstract:
A clutch having a pre-clutch and a main clutch, where the pre-clutch can be brought to an engaged or a disengaged state by a tensioning means, the pre-clutch being connected to the main clutch by means of an operative connection in such a way that the disengaged position and the engaged position are transmitted to the main clutch, and where the tensioning means is supported on a clutch basket of the main clutch.
Abstract:
This is a method of forming a fracture start portion of a ductile metal part on an inner circumferential face of a through hole by irradiating laser to an opposing position of the inner circumferential face of the thorough hole of the ductile metal part having a predetermined through hole and by forming a large number of recess portions separated with a predetermined distance at a predetermined interval from one opening to the other opening of the through hole, in which a recess part is formed, instead of by focusing the laser exactly onto the inner circumferential face of the through hole, by irradiating it onto the inner circumferential face of the through hole while defocusing from the inner circumferential face of the through hole by a predetermined amount as well as by supplying an assist gas to a position of the laser irradiation, and the laser is moved linearly at a predetermined speed from one side opening to the other side opening on the inner circumferential face of the through hole while irradiating the laser onto the inner circumferential face of the through hole at a predetermined pulse.