-
公开(公告)号:US20190220038A1
公开(公告)日:2019-07-18
申请号:US16243019
申请日:2019-01-08
Applicant: GEOSAT Aerospace & Technology
Inventor: Lung-Shun SHIH , Fu-Kai YANG , Yi-Feng CHENG , Chao-Wen FU , Meng-Yan SHEN
CPC classification number: G05D1/0661 , B64C9/00 , B64C39/024 , B64C2009/005 , B64C2201/08 , B64C2201/12 , G05D1/085
Abstract: The present application provides methods and systems for launching an unmanned aerial vehicle (UAV). An exemplary system for launching a UAV includes a detector configured to detect acceleration of the UAV in a launch mode. The exemplary system may also include a memory storing instructions and a processor configured to execute the instructions to cause the system to: obtain a signal configured to notify the UAV to enter the launch mode, determine whether the acceleration of the UAV satisfies a condition corresponding to threshold acceleration in the launch mode, and responsive to the determination that the acceleration of the UAV satisfies the condition, turn on a motor of the UAV.
-
公开(公告)号:US20190023374A1
公开(公告)日:2019-01-24
申请号:US15755669
申请日:2016-08-25
Applicant: UVISION AIR LTD
Inventor: MOSHE KAHLON , AMIT MORAG
CPC classification number: B64C3/56 , B64C39/024 , B64C2201/021 , B64C2201/08 , B64C2201/102 , B64C2201/201 , B64C2201/203 , F42B10/14
Abstract: An unmanned air vehicle (UAV) having a fuselage, a foldable propulsion means to generate thrust leading to the UAV movement, a driving means to drive the propulsion means and a plurality of flight control surfaces actuators are further included. The UAV further includes at least one pair of foldable wings where the rear portion of the wings is pivotally attached to the fuselage. The wings having at least one roll control surface hinged to at least one of the foldable wings. At least a pair of tail stabilizers having ruddervators flight control surfaces hinged to the tail stabilizers. In a fully extended position or in ready to fly state position, each of the foldable wings are deployed perpendicular to one another and perpendicular to the fuselage to form an offset-x shaped wings, and in a stowed position, each of the wings are positioned parallel to one another and positioned parallel to the fuselage.
-
公开(公告)号:US10054939B1
公开(公告)日:2018-08-21
申请号:US14033511
申请日:2013-09-22
Applicant: Paul G. Applewhite
Inventor: Paul G. Applewhite
CPC classification number: G05D1/0027 , B64C11/04 , B64C11/28 , B64C27/82 , B64C29/0083 , B64C29/02 , B64C39/024 , B64C2201/024 , B64C2201/08 , B64C2201/082 , B64C2201/084 , B64C2201/088 , B64C2201/126 , B64C2201/146 , B64F1/04 , B64F1/06 , G05D1/104 , G08G5/00 , G08G5/0008 , G08G5/0013 , G08G5/0069
Abstract: An improved unmanned aerial vehicular system having a rotor head assembly with any balanced number of rotary wings or blades, a generally tubular body assembly, a gimballed neck connecting the head to the body, and a navigation, communications and control unit such as for military and humanitarian operations, including payload delivery and pickup. The vehicle is generally guided using a global positioning satellite signal, and by pre-programmed or real time targeting. The vehicle is generally electrically powered and may be launched by one of (a) hand-launch, (b) air-drop, (c) catapult, (d) tube-launch, or (e) sea launch, and is capable of landing on both static and dynamic targets. Once launched, unmanned aerial vehicles may be formed into arrays on a target area and find use in surveillance, warfare, and in search-and-rescue operations.
-
44.
公开(公告)号:US20180196445A1
公开(公告)日:2018-07-12
申请号:US15915144
申请日:2018-03-08
Applicant: Workhorse Group Inc.
Inventor: Elliot T. Bokeno , Thaddeus M. Bort, JR. , Stephen S. Burns , Martin Rucidlo , Wei Wei , Donald L. Wires
CPC classification number: G05D1/102 , B60L53/00 , B60L2200/10 , B60L2200/36 , B60L2240/622 , B64C39/024 , B64C2201/027 , B64C2201/042 , B64C2201/08 , B64C2201/128 , B64C2201/141 , B64C2201/18 , B64C2201/208 , B64F1/362 , Y02T10/7072 , Y02T10/7291 , Y02T90/14 , Y02T90/16 , Y02T90/162
Abstract: Methods and associated systems for autonomous package delivery utilize a UAS/UAV, an infrared positioning senor, and a docking station integrated with a package delivery vehicle. The UAS/UAV accepts a package for delivery from the docking station on the delivery vehicle and uploads the delivery destination. The UAS/UAV autonomously launches from its docked position on the delivery vehicle. The UAS/UAV autonomously flies to the delivery destination by means of GPS navigation. The UAS/UAV is guided in final delivery by means of a human supervised live video feed from the UAS/UAV. The UAS/UAV is assisted in the descent and delivery of the parcel by precision sensors and if necessary by means of remote human control. The UAS/UAV autonomously returns to the delivery vehicle by means of GPS navigation and precision sensors. The UAS/UAV autonomously docks with the delivery vehicle for recharging and preparation for the next delivery sequence.
-
公开(公告)号:US20180186474A1
公开(公告)日:2018-07-05
申请号:US15844226
申请日:2017-12-15
Applicant: AeroVironment, Inc.
Inventor: Guan H. Su , Marcos Henry Rodriguez
CPC classification number: B64F1/04 , B64C39/024 , B64C2201/08 , B64C2201/084 , B64C2201/088 , B64C2201/201 , B64F1/06 , F41B11/80 , F41F3/00 , F41F3/042 , F41F3/052 , F41F3/073
Abstract: An unmanned aerial launch vehicle (UAV) launch apparatus is disclosed that includes a UAV having an exterior surface, an aerial vehicle (AV) tab extending from the exterior surface, a tube containing the UAV, the tube including a tab stop configured to controllably hinder travel of the AV tab past the tab stop, and a pair of opposing tab guides configured to position the AV tab for travel over the tab stop.
-
公开(公告)号:US09977431B2
公开(公告)日:2018-05-22
申请号:US15419804
申请日:2017-01-30
Applicant: Ford Global Technologies, LLC
Inventor: John A. Lockwood , Joseph F. Stanek
CPC classification number: G05D1/0276 , B60R16/02 , B60W30/00 , B64C29/0008 , B64C29/0091 , B64C29/02 , B64C39/00 , B64C39/02 , B64C39/022 , B64C39/024 , B64C2201/00 , B64C2201/02 , B64C2201/08 , B64C2201/086 , B64C2201/088 , B64C2201/12 , B64C2201/126 , B64C2201/127 , B64C2201/14 , B64C2201/141 , B64C2201/18 , B64C2201/182 , B64C2201/185 , B64C2201/187 , B64C2201/20 , B64C2201/208 , B64C2230/00 , G05D1/0022 , G05D1/0088 , G05D1/0094 , G05D1/0202 , G05D1/0212 , G05D1/0231 , G05D1/0242 , G05D1/0255 , G05D1/0257 , G05D1/028 , G05D2201/0213 , G08C17/00 , G08G1/012 , G08G1/091
Abstract: This disclosure generally relates to an automotive drone deployment system that includes at least a vehicle and a deployable drone that is configured to attach and detach from the vehicle. More specifically, the disclosure describes the vehicle and drone remaining in communication with each other to exchange information while the vehicle is being operated in an autonomous driving mode so that the vehicle's performance under the autonomous driving mode is enhanced.
-
公开(公告)号:US09973737B1
公开(公告)日:2018-05-15
申请号:US15265073
申请日:2016-09-14
Applicant: Amazon Technologies, Inc.
Inventor: Steven James Wilkins
CPC classification number: H04N7/185 , B64C39/024 , B64C39/028 , B64C2201/027 , B64C2201/042 , B64C2201/08 , B64C2201/108 , B64C2201/122 , B64C2201/126 , B64C2201/127 , B64C2201/145 , B64C2201/146 , B64C2201/182 , B64C2201/208 , B64D47/08 , G01C21/34 , G05D1/0011 , G05D1/0016 , G05D1/0094 , G05D1/101 , G05D1/102 , G06F3/167 , G06T7/20 , H04N5/23222
Abstract: Techniques and systems for providing miniaturized unmanned aerial vehicles (UAVs) are disclosed. The techniques and systems can include significant off-board processing support for the UAVs to enable the UAVs to be smaller, lighter, and less expensive than conventional UAVs. The techniques and systems can include routines to provide enhanced support for police during routine traffic stops. The techniques and systems can also include routines to locate objects or people including, for example, locating a lost child in a crowd or a lost vehicle in a parking lot. The miniaturized UAVs can provide enhances perception for the user to enable the user to over and around objects for improved visibility and safety, among other things.
-
公开(公告)号:US20180111684A1
公开(公告)日:2018-04-26
申请号:US15790473
申请日:2017-10-23
Applicant: Samsung Electronics Co., Ltd.
Inventor: Boram NAMGOONG , Soopyoung PARK , Jihyun PARK , Gwanghui LEE , Moonseok CHOI
CPC classification number: B64C39/024 , B64C2201/08 , B64C2201/088 , B64C2201/127 , B64C2201/146 , B64C2201/182 , G05D1/101 , G08G5/0013 , H03K17/962
Abstract: A UAV and a flying control method thereof that can detect a user grip of the UAV are provided. The UAV and a flying control method thereof can detect a user grip at a first position and can detect release of the user grip at a second position.
-
公开(公告)号:US20180065759A1
公开(公告)日:2018-03-08
申请号:US15804609
申请日:2017-11-06
Applicant: Airogistic, L.L.C.
Inventor: Jeff MICHALSKI , Michael FOLEY
CPC classification number: B64D45/04 , B64C39/024 , B64C2201/00 , B64C2201/027 , B64C2201/08 , B64C2201/12 , B64C2201/141 , B64C2201/18 , B64C2201/20 , G05D1/0669 , G05D1/0676 , G08G5/0013 , G08G5/0026 , G08G5/0065 , G08G5/0069 , G08G5/025
Abstract: An unmanned aerial vehicle (UAV), a stand for launching, landing, testing, refueling and recharging a UAV, and methods for testing, landing and launching the UAV are disclosed. Further, embodiments may include transferring a payload onto or off of the UAV, and loading flight planning and diagnostic maintenance information to the UAV.
-
50.
公开(公告)号:US20170369185A1
公开(公告)日:2017-12-28
申请号:US15194492
申请日:2016-06-27
Applicant: Insitu, Inc.
Inventor: Matthew Grubb
CPC classification number: B64F1/02 , B64C39/024 , B64C2201/08 , B64C2201/182 , B64C2201/205
Abstract: Locking line capture devices for unmanned aircraft, and associated systems and methods are disclosed herein. A representative system includes a line capture body having a line slot with an open end and closed end, and a retainer positioned proximate the line slot and movable between first position in which the retainer blocks access to the line slot and a second position in which the retainer allows access to the line slot. A locking device is operably coupled between the capture body and the retainer and is movable between an unlocked position to allow movement of the retainer between the first and second positions, and a locked position to block such movement. A release device is operably coupled to the locking device and movable between a secured position with the locking device secured in the locked position, and a released position with the locking device movable between the locked and unlocked positions.
-
-
-
-
-
-
-
-
-