Abstract:
A method and means for superimposing a secondary, higher frequency, lower amplitude oscillation of the angle of the trajectory of a glass fiber relative to a forming surface upon a primary, lower frequency, higher amplitude oscillation of the release mechanism.
Abstract:
Composite matting comprises a matting web with a peak-and-valley structure and a reinforcement in the form of a filament and/or ribbon system, which is used as a supporting base for the coating of walls. The reinforcement consists of glass filaments, aramide filaments, silica filaments, metal or synthetic polymer filaments and/or ribbons and acts in the direction of loading, during which it either prevents a change in shape or is limited to a prefixed mass in order to adjust the thickness of the composite matting.
Abstract:
A method and device for use in the method for forming a reinforcing filamental network is the subject of this application. The network includes a pair of straight filaments (54, 56) which can extend generally parallely with respect to one another and be spaced at a given distance. A serpentine filament (58) is made to sinuate across the straight filaments (54, 56), and can be bonded thereto at intersections by means of a hot melt adhesive which impregnates the filaments (54, 56, 58) and which has a measure of flow potential when subjected to pressure.The device for forming the network includes a cylindrical cam (100) which is disposed for rotation about an axis generally parallel to the axis of one of two pressure rollers (76, 90) which effect cold flow of the hot melt adhesive with which the filaments (54, 56, 58) are impregnated. The cam (100) has a groove (110) formed in its outer surface. A shoe (108) of a reciprocating filament guide (102) rides in the groove (110). The groove (110) extends both circumferentially and axially in the outer surface of the cam (100). The cam (100) is geared to rotation of one of the pressure rollers (76, 90) so that, as the pressure rollers (76, 90) feed the filaments (54, 56, 58) therethrough, the reciprocating guide (102) will move axially along the rollers (76, 90) in order to effect sinuating of the serpentine filament (58).
Abstract:
A method and device for use in the method for forming a reinforcing filamental network is the subject of this application. The network includes a pair of straight filaments (54, 56) which can extend generally parallely with respect to one another and be spaced at a given distance. A serpentine filament (58) is made to sinuate across the straight filaments (54, 56), and can be bonded thereto at intersections by means of a hot melt adhesive which impregnates the filaments (54, 56, 58) and which has a measure of flow potential when subjected to pressure.The device for forming the network includes a cylindrical cam (100) which is disposed for rotation about an axis generally parallel to the axis of one of two pressure rollers (76, 90) which effect cold flow of the hot melt adhesive with which the filaments (54, 56, 58) are impregnated. The cam (100) has a groove (110) formed in its outer surface. A shoe (108) of a reciprocating filament guide (102) rides in the groove (110). The groove (110) extends both circumferentially and axially in the outer surface of the cam (100). The cam (100) is geared to rotation of one of the pressure rollers (76, 90) so that, as the pressure rollers (76, 90) feed the filaments (54, 56, 58) therethrough, the reciprocating guide (102) will move axially along the rollers (76, 90) in order to effect sinuating of the serpentine filament (58).
Abstract:
An apparatus and method of manufacture for making tire breaker cord fabric comprising a tire cord laying head to lay a zig-zag assembly of a single cord, edge loop holding units and drive means for relatively moving the cord assembly to an elastomeric material coating device.
Abstract:
THE SPECIFICATION DESCRIBES A METHOD AND APPARATUS FOR FORMING A NON-WOVEN FIBROUS WEB, E.G. SUITABLY FOR PADDING OR STUFFING. A TOW IS SPREAD AND FED WITHOUT TENSION BY TWO ROLLERS, ROTATING AT DIFFERENT SPEEDS, ONTO A CONVEYOR BELT, AND A PUSHER BLADE EXTENDING OVER THE FULL WIDTH INTERMITTENTLY PRESSES ON THE TOW AND MOVES FASTER THAN THE BELT. THE RESULTING WEB IS SPRAYED WITH A BONDING AGENT WHICH IS THEN CORED.