Abstract:
The invention relates to a fuel injector with a holding body and a nozzle body which are joined together and which accommodate a coupler module which has a coupler body enclosed by a spring sleeve. The spring sleeve is open in a circumferential direction at a seam thereof which extends in the longitudinal direction. Either the wall thickness of the spring sleeve varies in the longitudinal direction, or a width of at least one hole geometry in the sheathing of the spring sleeve varies in the longitudinal direction.
Abstract:
The sealing element for integration into a sealing tool for producing smooth stamping fields during the sealing of two plastic sheets has a base body. A first slot extends into the base body from a first narrow lateral surface, and a second slot, which is offset vertically from the first slot, extends into the base body from a second narrow lateral surface, in such a way that the two slots define a section of the base body which has substantially the shape of an S or reversed S. The first slot has a U-shape with a first leg of the first slot being longer than a second leg of the first slot, and the second slot has a U-shape with a first leg of the second slot being longer than a second leg of the second slot. Each of the two slots expands at its inner end to form a bore.
Abstract:
The invention solves the problem of designing and manufacturing springs made of elastic materials, particularly steel springs, with prescribed characteristic (dependence of flex on external load) given by a smooth (i.e. differentiable) non-linear function. The method according to the invention consists in forming an elastic body with suitably shaped regions of diversified stiffness and (possibly) diversified initial internal stresses (this suitable shape of the regions lies at the hart of the invention and is covered by separate patent claims).
Abstract:
Problem: To reduce vibration and noise of a bracket and the like, and also to save a work for manufacturing and shorten manufacturing time, in the case that a forced-excitation of a vibrating apparatus is a cause.Solution: There are provided a frame body 1, to which a rotation motor 6 is fixed, and dynamic vibration absorbers 2, 3 which are structured in a manner such that slits are made in a portion of the frame body 1 and the slit part is bent in an upward direction, and is configured so that the vibrating portions 2a, 3a of the dynamic vibration absorbers 2, 3 vibrate in the vibrating direction of the frame body 1 being vibrated by the rotation motor 6.
Abstract:
A support structure supporting a movable component is provided with a vibration damper in the form of at least one cavity in the structure, the cavity being filled with a composite material; preferably a composite material of about 80% butyl rubber and 20% carbon particles. The composite material is preferably bonded to the cavity walls by adhesive or mechanically coupled by a texture on the cavity walls. The rubber composite may be first moulded then inserted into the cavity or may be injected into the cavity and moulded by the cavity. The cavities may be provided with a vent to facilitate insertion or injection of the composite material.
Abstract:
A testing apparatus and method for determining the impact an/or vibration absorbent characteristics of an impact and/or vibration absorbent material. The apparatus includes a base having upwardly extending vertical guide rods. A sample plate is maintained in a position above the base by one or more springs of known spring rate. A weight is adapted to move vertically along the guide rods and to impact the sample plate and a sample of impact and/or vibration absorbent material when dropped from a raised position. The impact of the weight causes a downward vertical displacement of the sample plate, which displacement is measured by a moveable indicator. This displacement can be used, along with the total spring rate provided by the spring(s), to calculate a pass-through impact force. The pass-through impact force can then be subtracted from the impact force generated by the falling weight to determine the amount of impact force absorbed by the impact and/or vibration absorbent material.
Abstract:
A retainer for a shock absorber is provided. The retainer includes a central hole, a protrusion portion, at least one through hole formed outside a radius of the protrusion portion, and a seat portion protruding outside a radius of the through hole, in which at least two points on the seat portion are spaced apart from each other by different distances from a central axis vertically penetrating the central hole, the seat portion forms a rotationally symmetrical shape with respect to the central axis, and the seat portion forms an outer periphery.
Abstract:
An auxetic structure includes a plurality of polyhedral units arranged adjacent one another to form a three-dimensional structure. Each polyhedral unit has protrusions extending orthogonally from some surfaces thereof and recesses formed in other surfaces thereof. The protrusions of each polyhedral unit are slidingly received in corresponding recesses of adjacent polyhedral units. A plurality of sleeves are positioned around each protrusion and in a corresponding recess. The sleeves are formed from a softer material than the protrusions. An auxetic effect is achieved by shear-induced displacement of the protrusions in corresponding recesses.
Abstract:
A shock absorber for a vehicle includes an inner tube at least partially defining an inner fluid compartment and an outer tube enclosing at least in part the inner tube therein. Together, the inner tube and the outer tube at least partially define an outer fluid compartment therebetween. The inner tube defines a bypass zone having a plurality of bypass apertures that fluidly communicate the inner fluid compartment with the outer fluid compartment. A piston is movably mounted within the inner tube and moves in compression and in rebound. The piston defines a piston passage extending through the piston for permitting fluid flow between a first side and second side of the piston. An electronically controlled valve is connected to the piston and controls fluid flow through the piston passage. A method for controlling the shock absorber is also disclosed.
Abstract:
A flexible flywheel includes: a shaft fastening portion fixed to an end portion of an engine crankshaft; an annular inertia ring provided around the shaft fastening portion; a plurality of elastic spoke portions which extend in the radial direction between the shaft fastening portion and the inertia ring and connect the shaft fastening part and the inertia ring to each other, and that absorb vibration acting on the crankshaft by undergoing deflection; and weight portions provided between adjacent ones of the elastic spoke portions. The fastening portion, inertial ring, elastic spoke portions, and weight portions are formed integrally by casting or forging.