Abstract:
An apparatus having a plurality of test units (520), a loading transport unit (510) transporting a plurality of electronic devices from a customer tray (4C) to a test tray (4T) before being loaded in a test unit, and a classifying transport unit (530) transporting a plurality of electronic devices from a test tray while classifying them to customer trays in accordance with test results, the loading transport unit being provided at least at a frontmost stage of a plurality of test units, the classifying transport unit being provided at least at a rearmost stage of the plurality of test units, the test tray being successively conveyed from the frontmost stage to the rearmost stage of the plurality of test units in the state carrying electronic devices and returned from the rearmost stage test unit to the frontmost stage test unit.
Abstract:
A system and method for collecting and analyzing optical inspection results obtained during the manufacturing process and comparing those results to actual functional results of a specially designed test vehicle integrated circuit. The test vehicle integrated circuit allows failures to be localized to very small areas, which allows more accurate correlation between inspection faults and functional failures. The correlation of inspection faults to actual functional failures is used to change the sensitivity settings for an optical inspection system to more accurately detect defects that are likely to be functional failures.
Abstract:
A method for sorting integrated circuit (IC) devices of the type having a fuse identification (ID) into those devices requiring enhanced reliability testing and those requiring standard testing includes storing fabrication deviation data, probe data, and test data in association with the fuse ID of each of the devices indicating each of the devices requires either enhanced reliability testing or standard testing. The fuse ID of each of the devices is then automatically read before, during, or after standard testing of the devices. The testing process requirement data stored in association with the fuse ID of each of the devices is then accessed, and the devices are sorted in accordance with the accessed data into those devices requiring enhanced reliability testing and those requiring standard testing.
Abstract:
A method for use with a test system having sites that hold devices under test (DUTs) includes executing a first site loop to iterate through the sites, where the first site loop includes an instruction to program hardware associated with at least one of the sites, and executing a second site loop to process data received from the DUTs, where the second site loop and the first site loop have a same syntax.
Abstract:
A circuit for computing moment pre-products for statistical analysis reduces data transfer volume for on-chip statistical measurements. The circuit calculates the sums of multiple exponentiations of outputs of one or more measurement circuits, thereby reducing the amount of data that must be transferred from a wafer. An integer scaling of the input data is arranged between zero and unity so that the exponentiations all similarly lie between zero and unity. The circuit can use look-up tables and adder/accumulators to accumulate the contributions of each measurement to each exponentiation, or use a multiplier arrangement to determine the contributions. The multipliers can be implemented in the adder/accumulators by clocking the adder/accumulators by corresponding counts determined from the measurement data and lower-order exponentiations. Ranges of the measurement values are determined by capturing maximum and minimum values using comparators as the measurements are input.
Abstract:
A method for testing integrated circuits comprises: generation of a change in an input signal of the integrated circuit, detection of a change in the output signal of the integrated circuit, the change triggered by the change in the input signal when a predetermined condition is satisfied, and a comparison of the detected output signal with at least one predetermined comparison criterion. Whereby, the predetermined condition is derived individually for each integrated circuit from a time response of the output signal.
Abstract:
Integrated circuit test circuits may include at least an instruction processor and input-output subsystems. Input-output subsystems are segmented together into input-output subsystem segments. Each input-output subsystem includes an analog wrapper circuit (IW-A) operable to connect an input-output port to analog buses and further operable to isolate the input-output port from the buses, an integrated wrapper for delay test circuit (WI-D) operable to control a delay test sequence, and a soft wrapper circuit operable to control the IW-A and the IW-D, the soft wrapper circuit being directed by the instruction processor.
Abstract:
An on-wafer method and apparatus for preprocessing measurements of process and environment-dependent circuit performance variables provides new techniques for yield/performance test and analysis. An on-wafer circuit calculates the sums of multiple exponentiations of outputs of one or more measurement circuits, thereby reducing the amount of data that must be transferred from the wafer without losing information valuable to the analysis. An integer scaling of the input data is arranged between zero and unity so that the exponentiations all similarly lie between zero and unity. Measurement value ranges are determined by capturing extreme values using comparators as the measurements are input.
Abstract:
A process variation detector includes a pulse-signal generating unit that generates a pulse signal having a pulse width corresponding to a characteristic of a process variation in an integrated circuit based on a clock signal; and an output unit that generates a predetermined value, when the pulse signal indicates a specific process variation, by using a transistor of which a channel width and a gate length are set to an unbalanced state, and outputs the predetermined value.
Abstract:
A method for sorting integrated circuit (IC) devices of the type having a fuse identification (ID) into those devices requiring enhanced reliability testing and those requiring standard testing includes storing fabrication deviation data, probe data, and test data in association with the fuse ID of each of the devices indicating each of the devices requires either enhanced reliability testing or standard testing. The fuse ID of each of the devices is then automatically read before, during, or after standard testing of the devices. The testing process requirement data stored in association with the fuse ID of each of the devices is then accessed, and the devices are sorted in accordance with the accessed data into those devices requiring enhanced reliability testing and those requiring standard testing.