Abstract:
The thickness of a terminal connection portion of a positive electrode current collector is greater than that of a terminal connection portion of a negative electrode current collector. The terminal connection portion of the positive electrode current collector has a through-hole, and a positive electrode terminal is inserted into the through-hole and is upset on the terminal connection portion. The terminal connection portion of the negative electrode current collector has a through-hole, and a negative electrode terminal is inserted into the through-hole and is upset on the terminal connection portion. A recessed portion is formed in a lower surface of the positive electrode terminal connection portion around the through-hole, and a lower end portion of the positive electrode terminal is disposed in the recessed portion.
Abstract:
A secondary battery includes an electrode assembly including a first electrode plate, a separator, and a second electrode plate; a first collecting plate electrically coupled to the first electrode plate; a second collecting plate electrically coupled to the second electrode plate; a case containing the electrode assembly, the first collecting plate, and the second collecting plate; a first electrode terminal electrically coupled to the first collecting plate; a second electrode terminal electrically coupled to the second collecting plate; a first plate coupled to the first collecting plate and the first electrode plate and configured to seal the case; a second plate coupled to the second collecting plate and the second electrode terminal; and an insulation plate between the first plate and the second plate.
Abstract:
A rechargeable battery including an electrode assembly including a first electrode, a second electrode, and a separator between the first electrode and the second electrode; a case containing the electrode assembly; a cap plate covering an opening of the case; and an external short circuit assembly on the cap plate and including: a cover on the cap plate; and a terminal plate on the cover and coupled to the cover.
Abstract:
A terminal for a battery has a mounting section and a contacting section. There is a torque ring between the mounting section and the contacting section. The mounting section is for holding the terminal within a battery cover, into which it preferably is injection molded. The terminal is a hollow body, which has an outer surface and an inner surface. At the contacting section, the outer surface is conically shaped. At the mounting section, the outer surface has at least one labyrinth ring forming a labyrinth. The inner surface comprises at least two sections. An upper section is essentially surrounded by the contacting section, and preferably has a conical shape. A lower section is essentially surrounded by the mounting section. The lower section preferably has a concave cross-sectional shape. Between the upper section and the lower section, there is an edge. The edge at the inner surface may be essentially surrounded by the torque ring at the outer surface.
Abstract:
The present specification discloses a technology for protecting a portion where corrosion may occur in the assembled battery. An assembled battery includes a plurality of battery packs. Each of the battery packs includes a housing with an opening at a top thereof, a cover plate, and a relief valve. The cover plate is welded at the opening which seals the housing. The relief valve is provided on the cover plate. The assembled battery hardier includes an exhaust cover and an insulating sheet. The exhaust cover covers the relief valve of each of the battery packs, and guides, toward the outside of the assembled battery, an internal gas that comes out of the relief valves. The insulating sheet may cover a portion of a welded line between the housing and the cover plate of each battery pack, and the portion faces the exhaust cover.
Abstract:
A method of manufacturing a secondary battery, which is capable of simplifying a processing method. The method includes preparing a cap plate that closes an opening of a case, the case accommodating an electrode assembly therein and having the opening at an end thereof, forming a short-circuit portion and a vent portion on the cap plate, performing a first heat treatment on the short-circuit portion, and performing a second heat treatment on the vent portion. The secondary battery manufactured by this method is economical because the processing method is simplified and a manufacturing cost is reduced.
Abstract:
A battery module comprises at least one battery cell including two battery cell terminals. The battery module further comprises a battery module cover configured for connection to the battery module to cover at least part of the battery module. Conducting tracks configured for connection to at least one sensor in an electrically conductive manner are integrated in the battery module cover.
Abstract:
The invention relates to a battery cell, in particular a lithium-ion battery cell, wherein a cover plate (23) forming a part of a battery cell housing, which is designed as a plane sheet in a conventional manner, is modified to avoid short circuits between the poles of the battery cell due to moisture, for example. To this end, the cover plate (23) is provided with a central area (33) and an edge area (35) surrounding said central area (33). The central area (33) is located above an opening (14) to be closed off by the cover plate (23) of a container (13) forming a part of the battery cell housing, whereas the edge area (35) extends inside said opening (14). Thus, occurring moisture can drain off the platform-like raised central area (33) sideways toward a channel (37) in the edge area (35), and evaporate from there.
Abstract:
A rechargeable battery module includes unit battery cells and a bus bar connecting the unit battery cells in parallel. Each unit battery cell includes a cap plate, a case that accommodates an electrode assembly, lead tabs connected to the electrode assembly, one of the lead tabs including a cell fuse, first and second electrode terminals that penetrate the cap plate and are connected to the lead tabs, and an external short-circuit part including a membrane that seals a short-circuit hole of the cap plate and that is electrically connected to the second electrode terminal and a connection plate that is electrically connected to the first electrode terminal. The bus bar includes two current paths that connect neighboring second electrode terminals through different resistances, one of the two current paths including an external fuse. A resistance of the external fuse is greater than a resistance of the cell fuse.
Abstract:
A cell includes a front cover having a front cavity, a rear cover having a rear cavity, a first terminal, a second terminal, and an electrode group. The rear cover is connected to the front cover. The first terminal is disposed on the front cover and passes through the front cover to the front cavity. The second terminal is disposed on the front cover, and passes through the front cover to the front cavity. The electrode group is disposed in the front cavity and the rear cavity, and connected to the first terminal and the second terminal in the front cavity.