Abstract:
Provided are coaxial waveguide microstructures. The microstructures include a substrate and a coaxial waveguide disposed above the substrate. The coaxial waveguide includes: a center conductor; an outer conductor including one or more walls, spaced apart from and disposed around the center conductor; one or more dielectric support members for supporting the center conductor in contact with the center conductor and enclosed within the outer conductor; and a core volume between the center conductor and the outer conductor, wherein the core volume is under vacuum or in a gas state. Also provided are methods of forming coaxial waveguide microstructures by a sequential build process and hermetic packages which include a coaxial waveguide microstructure.
Abstract:
A signal converter configured to convert a signal between a substrate unit and a hollow waveguide includes a substrate unit, including a first conductor layer formed on one face of a dielectric substrate, and a second conductor layer formed on another face of the dielectric substrate, a plurality of conduction units that penetrate the dielectric substrate and provide conduction between the first conductor layer and the second conductor layer, an dielectric waveguide formed by the dielectric substrate, the first and second conductor layers, and the conduction units, and a conversion unit that converts the signal between the hollow waveguide and the dielectric waveguide, the conversion unit including a conductor patch having a separator region between itself and the first conductor layer, with the conductor patch being disposed on the substrate unit within an aperture of the hollow waveguide.
Abstract:
A method of reducing multipactor effect occurrence on surfaces in a high energy field, e.g., RF devices, is provided and RF devices having a configuration produced by the method are provided. The method includes forming wall structures formed of a metallic wall material and defining a channel through which the RF energy travels, the wall material having a wall material surface. A porous layer is disposed over the wall material surface and has a porous layer upper surface opposite a porous layer lower surface facing the wall material surface. The porous layer defines pores with openings distributed in the porous layer upper surface. A conductive layer is disposed over the porous layer upper surface.
Abstract:
A method of reducing multipactor effect occurrence on surfaces in a high energy field, e.g., RF devices, is provided and RF devices having a configuration produced by the method are provided. The method includes forming wall structures formed of a metallic wall material and defining a channel through which the RF energy travels, the wall material having a wall material surface. A porous layer is disposed over the wall material surface and has a porous layer upper surface opposite a porous layer lower surface facing the wall material surface. The porous layer defines pores with openings distributed in the porous layer upper surface. A conductive layer is disposed over the porous layer upper surface.
Abstract:
In some embodiments a printed circuit board is fabricated using printed circuit board material, and a waveguide is formed that is contained within the printed circuit board material. Other embodiments are described and claimed.
Abstract:
A method is provided for forming a waveguide in a printed circuit board. This may include forming a trench in a printed circuit board substrate and forming at least one metalized surface along the trench. A metalized capping surface may be provided over the trench so as to form the waveguide structure.
Abstract:
A waveguide, a high-frequency circuit, and a high-frequency circuit device having the waveguide are provided. The waveguide includes two conductor plates each of which has a surface having a groove. At least one of the conductor plates has protrusions extending from the surface at both sides of the groove. The two conductor plates are in contact with each other such that the grooves face each other. Screws disposed between the protrusions and bumps, which are formed outside the protrusions on the conductor plate, fasten the conductor plates with a predetermined pressure.
Abstract:
An “inside out” process is used to make RF antennas and components or higher frequency components and/or optics. This invention is especially useful for spaceflight components requiring high performance at low weight, components requiring high specific stiffness and/or strength and components requiring high performance, precision or stability. An electroformed single or multi layer of metal, such as copper, is applied to a reusable or disposable mandrel. Additional metal or composite components and/or pieces may be attached to the electroform by means of further electroforming, and/or applying adhesive and/or soldering. Any composite material (for example, fiberglass or carbon fiber reinforced plastic) is then applied selectively or uniformly around the electroform and/or additional components for structural reinforcement, and/or enhancement of thermal stability and/or thermal conductivity. The mandrel is then removed by physical or chemical means. Normal issues with plating of pre-formed composites are avoided with this technique. Adhesion over temperature and humidity extremes, surface finish, uniform metalization thickness, and surface electrical conductivity are all vastly improved over equivalent electroplated composites.
Abstract:
A waveguide structure is fabricated by patterning active elements on a semiconductor wafer (21). The upper surface of the wafer (21) and the active elements are then coated by a dissolvable positive resist polymer. The polymer is etched using conventional techniques to produce a former for the structure of the waveguide channel and subsequently the polymer former is coated (26) and electroformed (27) using a suitable metallic material. Finally, the polymer former is dissolved leaving an open channel (25) the boundaries of which are defined by the electroformed structure. The waveguide structure has the advantage that the active elements are integral with the waveguide structure and lie in a common fabrication plane which means that if the depth of the waveguide varies the active elements remain in the same plane. The waveguide structure is particularly suited for use at terahertz frequencies.
Abstract:
A waveguide and a method for assembling the same are provided. The waveguide comprises a first half and a second half. A gasket is applied to a first mating surface of the first half. The first mating surface of the first half is aligned with a second mating surface of the second half. The gasket is positioned between the first mating surface of the first half and the second mating surface of the second half. The first half is fastened to the second half to form the assembled waveguide.