Abstract:
An upper circuit board body has a first upper main surface and a first lower main surface. A lower circuit board body has a second upper main surface and a second lower main surface. A lower circuit board first mounting electrode and one or more lower circuit board second mounting electrodes are disposed on the second upper main surface. A first component is mounted on the one or more lower circuit board second mounting electrodes. A first conductor member is mounted on the lower circuit board first mounting electrode and is disposed on the left of the first component. A second conductor member is disposed on the first lower main surface, is connected to the upper end of the first conductor member, and overlaps at least a part of the first component as viewed in the downward direction.
Abstract:
A wiring substrate includes a resin insulating layer, and a conductor layer formed on the resin insulating layer and including a seed layer and a metal film formed on the seed layer such that the conductor layer has wiring patterns including wirings. The conductor layer is formed such that each of the wirings in the wiring patterns has undercut parts on side surfaces extending to the resin insulating layer, and the wirings in the conductor layer include outer wirings formed such that each of the outer wirings has the undercut part on the side surface facing an adjacent one of the wirings is smaller than the undercut part on the side surface farther from the adjacent one of the wirings.
Abstract:
A method of forming a high-conductivity electrical interconnect on a substrate may include forming a graphene film with a plurality of graphene members, depositing a metal over the graphene film, and providing a metallic overlay that connects the plurality of graphene members together through the depositing operation to form a covered graphene film.
Abstract:
Provided is a wireless module whose size can be made smaller. The wireless module includes: a first substrate on which an antenna is mounted; a second substrate which opposes the first substrate and on which an electronic component is mounted; and a plurality of electric conductors which connect the first substrate and the second substrate and which transmit a signal between the antenna and the electronic components, wherein the plurality of electric conductors are disposed between the first substrate and the second substrate in series in a substantially vertical direction with respect to mounting surfaces of the first substrate and the second substrate.
Abstract:
Provided is a wireless module whose size can be made smaller. The wireless module includes: a first substrate on which an antenna is mounted; a second substrate which opposes the first substrate and on which an electronic component is mounted; and a plurality of electric conductors which connect the first substrate and the second substrate and which transmit a signal between the antenna and the electronic components, wherein the plurality of electric conductors are disposed between the first substrate and the second substrate in series in a substantially vertical direction with respect to mounting surfaces of the first substrate and the second substrate.
Abstract:
A method for manufacturing an antenna sheet, includes: a pressing step in which an overlapped portion of an antenna coil and/or a connection pattern formed from a metal material and provided on one surface of a substrate formed from a thermoplastic resin, and a conductive member formed from a metal material and provided on the other surface of the substrate is pressed using a pressing unit at least from the surface of one side of the substrate; and a welding steps in which the overlapped portion of the antenna coil and/or the connection pattern and the conductive member is welded.
Abstract:
A method for manufacturing an antenna sheet. The method is for connecting at least one of an antenna coil and a connection pattern, to a conductive member. The at least one of the antenna coil and the connection pattern is provided on one surface of a substrate and the conductive member is provided on the other surface of the substrate. The method includes a pressing process performed to form a first through hole to the substrate, wherein the first through hole passes through the substrate, and to bring the at least one of the antenna coil and the connection pattern, and the conductive member into contact with each other. The method also includes a melting process performed to melt the at least one of the antenna coil and the connection pattern, and the conductive member to each other.
Abstract:
A power chain consisting of a chain comprising links that are electrically conductive elements mounted on a circuit board in at least two layers and in such a way that the elements included in the power chain are assembled shifted and overlapping and in electrical contact with each other.
Abstract:
Presented herein are stud bump bonding techniques for electrically connecting an elongate conductor, such as a wire or pin, to a bonding pad. A plurality of stud bumps are bonded to a surface of a bonding pad and an elongate electrical conductor is positioned in proximity to the plurality of stud bumps. The elongate conductor is bonded to one or more of the stud bumps.
Abstract:
An electrical structure and method for forming electrical interconnects. The method includes positioning a sacrificial carrier substrate such that a first surface of a non-solder metallic core structure within the sacrificial carrier substrate is in contact with a first electrically conductive pad. The first surface is thermo-compression bonded to the first electrically conductive pad. The sacrificial carrier substrate is removed from the non-solder metallic core structure. A solder structure is formed on a second electrically conductive pad. The first substrate comprising the non-solder metallic core structure is positioned such that a second surface of the non-solder metallic core structure is in contact with the solder structure. The solder structure is heated to a temperature sufficient to cause the solder structure to melt and form an electrical and mechanical connection between the second surface of the non-solder metallic core structure and the second electrically conductive pad.