Abstract:
A synchronous motor includes a stator with a stator winding, and a rotor on which magnetic poles made of permanent-magnetic material are formed, each pole having a cambered outer contour, especially an outer contour cambered radially outwards, in particular, 2×p individual poles being salient in the circumferential direction, p being the number of pole pairs.
Abstract:
An electric motor is provided. The electric motor includes a hollow-shaped stator configured to have a teeth part protruding on an inner surface thereof, and a rotor configured to be inserted into the hollow-shaped rotor, and including an outer surface facing the teeth part, and a plurality of poles therein. The rotor includes a bridge part disposed between poles and has a front rotor groove and a back rotor groove that are each dented at a front and a back of the bridge part with respect to a rotating direction of the rotor.
Abstract:
A brushless motor includes a stator and a rotor. The stator includes a stator core and two windings. The stator core includes a yoke, two opposing first teeth, and two second teeth. The windings are respectively wound around the two first teeth. The second teeth are not wound with any winding. The first and second teeth are alternatively arranged. The rotor is received in a space cooperatively bounded by the pole shoes of the main and second teeth. A plurality of slot openings is defined between the pole shoes of the first teeth and adjacent pole shoe of the adjacent second teeth, which reduces the magnetic leakage and increases the motor power density.
Abstract:
A single phase permanent magnet motor and a method for making the same are provided. The method includes the steps of: configuring a stator core, wherein the stator core comprises a first ring portion, tooth bodies, and a pole shoe extending from each tooth body, a slot opening is defined between each two adjacent pole shoes, at least one pole shoe includes a main portion, a connecting portion and an easily bendable tip, the easily bendable tip is bent relative to the main portion about the connecting portion; winding a stator winding around the stator core; and bending the easily bendable tip about the connecting portion to narrow the slot opening. The present invention can change the size of the slot opening, thus more rapidly finishing the winding of the stator winding and enhancing the efficiency of the motor fabrication.
Abstract:
A brushless motor includes a stator having stator core and winding teeth evenly distributed on the stator core; and a rotor rotatably disposed within the stator with the winding teeth facing the rotor, where the rotor has a rotor core and magnets evenly distributed around the rotor core. A first symmetry axis is defined passing through a center of a one of the magnets to a center of the rotor, and a second symmetry axis is defined passing between adjacent magnets to the center of the rotor. A first distance between the outer surface of the rotor to a surface of a winding tooth when the first axis is aligned with the winding tooth is smaller than a second distance between the outer surface of the rotor to the surface of the winding tooth when the second axis is aligned with the winding tooth.
Abstract:
A permanent-magnet type rotating electrical machine, including a rotor including a plurality of magnetic poles arranged at an equal interval, and a stator including a plurality of teeth and a plurality of armature windings. A high frequency voltage different in frequency and amplitude from voltages for generating a torque is applied to the armature windings. A magnetic pole position of the rotor is estimated by using a current trajectory of a measured high frequency current. When dq transform is applied to the measured high frequency current, a current trajectory forms an ellipse on d and q axes. Angular variation ranges of a major axis of the ellipse with respect to a load current and a rotor position are set so as to acquire a predetermined position estimation resolution.
Abstract:
A single-phase motor, an airflow generating apparatus, and an electric apparatus are provided. The motor includes a stator and a rotor. The stator includes a stator core and stator windings. The stator core includes a ring-shaped yoke and multiple pole portions. A magnetic bridge or slot opening is formed between each two adjacent pole portions. An end surface of each pole portion includes an arc surface. A positioning groove is formed in each arc surface. The arc surfaces of the pole portions cooperatively form a receiving cavity. The rotor includes a rotary shaft and a permanent magnet fixed to the rotary shaft. The permanent magnet is received in the receiving cavity. The arc surfaces are located on a cylindrical surface centered around a rotation axis of the rotary shaft. The cogging torque of the motor can be reduced, thus reducing the startup current and hence the noise of the motor.
Abstract:
A motor of this invention comprises a rotor having a permanent magnet, the number of which magnet poles is P, and a stator including M pcs of teeth, the teeth arranged in a circumferential direction in a manner to face the permanent magnet through a spatial gap, wherein the stator includes stator core having the number M of the teeth, and a winding wire wound about each of the tooth, wherein the number P of the magnet poles and the number M of the teeth have a relation defined by formulae (2/3)M
Abstract:
A synchronous generator, in particular a multipole synchronous ring generator of a gearless wind turbine for generating electric current, comprising a rotor and a stator having teeth and slots arranged therebetween for receiving a stator winding, wherein the stator is divided in a circumferential direction into stator segments, each having a plurality of teeth and slots, and at least two stator segments being offset or interleaved with respect to one another in a circumferential direction.
Abstract:
A rotor of an interior permanent magnet motor includes a rotor core; permanent magnet insertion holes formed in an outer circumferential portion of the rotor core along a circumferential direction; a permanent-magnet end-portion air gap formed in each of both end portions of each permanent magnet insertion hole; a permanent magnet inserted in each permanent magnet insertion hole; and slits formed in an outer circumferential core portion on an outer side in a radial direction with respect to each permanent magnet insertion hole, wherein a width of a core present between the permanent-magnet end-portion air gap and the slit and a width of a core present between the slits are such that a width of a core gradually increases as the core is closer to a magnet pole center from the interpolar line.