Abstract:
A method using a phase locked loop (PLL) includes receiving a reference frequency. The method further includes generating a control signal based on the reference frequency. The method further includes adjusting an output signal based on the control signal. Adjusting the output signal includes operating a plurality of switches in response to the control signal, wherein operating the plurality of switches comprises selectively electrically connecting a first ground plane to a first floating plane, wherein the first floating plane is between the first ground plane and the signal line, and the first floating plane is a same distance from a substrate as the first ground plane.
Abstract:
A voltage controlled oscillator comprises a negative resistance, a first inductor, a fixed capacitor, and a frequency control component. The frequency control component comprises at least one varactor and at least a second inductor connected in series with the at least one varactor. A magnitude of an inductance of the second inductor is selected such that the frequency control component has an effective capacitance range larger than a capacitance range of the at least one varactor.
Abstract:
A voltage controlled oscillator comprises a negative resistance, a first inductor, a fixed capacitor, and a frequency control component. The frequency control component comprises at least one varactor and at least a second inductor connected in series with the at least one varactor. A magnitude of an inductance of the second inductor is selected such that the frequency control component has an effective capacitance range larger than a capacitance range of the at least one varactor.
Abstract:
An inductor layout (200, 300, 400) comprising a first inductor (210, 310, 410) and a second inductor (220, 320, 420). The first and second inductors (210, 310, 410; 220, 320, 420) are electrically and magnetically independent inductors concentrically arranged on an integrated circuit 800. At least one of the first and second inductors (210, 310, 410; 220, 320, 420) is a multi-loop inductor with a first axis (226a, 316a, 326a, 416a, 426a) of symmetry.
Abstract:
An apparatus for generating an oscillating output signal includes an inductive-capacitive (LC) circuit and a current tuning circuit. The LC circuit includes a primary inductor and a varactor coupled to the primary inductor. A capacitance of the varactor is responsive to a voltage at a control input of the varactor. The current tuning circuit includes a secondary inductor and a current driving circuit coupled to the secondary inductor. The current driving circuit is responsive to a current at a control input of the current driving circuit. An effective inductance of the primary inductor is adjustable via magnetic coupling to the secondary inductor, and a frequency of the oscillating output signal is responsive to the effective inductance of the primary inductor and to the capacitance of the varactor.
Abstract:
There are provided a variable inductor with little degradation in quality factor, and an oscillator and a communication system using the variable inductor. An inductance controller comprising a reactance device with a variable device value, such as, for example, a variable capacitor, is connected to a secondary inductor, magnetically coupled to a primary inductor through mutual inductance. The inductance controller is provided with an inductance control terminal for receiving a control signal for controlling capacitance of the variable capacitor. Inductance of the primary inductor is varied by varying the capacitance by the control signal.
Abstract:
There are provided a variable inductor with little degradation in quality factor, and an oscillator and a communication system using the variable inductor. An inductance controller comprising a reactance device with a variable device value, such as, for example, a variable capacitor, is connected to a secondary inductor, magnetically coupled to a primary inductor through mutual inductance. The inductance controller is provided with an inductance control terminal for receiving a control signal for controlling capacitance of the variable capacitor. Inductance of the primary inductor is varied by varying the capacitance by the control signal.
Abstract:
There are provided a variable inductor with little degradation in quality factor, and an oscillator and a communication system using the variable inductor. An inductance controller comprising a reactance device with a variable device value, such as, for example, a variable capacitor, is connected to a secondary inductor, magnetically coupled to a primary inductor through mutual inductance. The inductance controller is provided with an inductance control terminal for receiving a control signal for controlling capacitance of the variable capacitor. Inductance of the primary inductor is varied by varying the capacitance by the control signal.
Abstract:
An inductor circuit includes a pair of inductors connected in parallel with each other and a switch for turning on and off electric power to one of the pair of inductors. The inductance of the inductor circuit can be varied and the quality factor Q can be improved. Further, RF circuits employing the inductor circuit can generate an intended operating frequency.
Abstract:
An adjustable inductor includes a first conductor line to receive an alternating current (AC) signal, a second conductor line configured in a loop arrangement, to generate an inducting current upon receiving the AC signal at the first conductor line, and a switch to adjust an inductance of the first conductor line by switching a loop connection of the second conductor line according to an external control signal.