Abstract:
An apparatus is disclosed that implements an on-chip test tone generator for built-in spur testing. In an example aspect, the apparatus includes an integrated circuit with a test tone generator, at least one reference signal generator, and at least one signal propagation path. The test tone generator includes an amplitude control circuit. The at least one signal propagation path includes a transceiver path, a mixer, and a switch. The transceiver path is configured to be coupled to an antenna. The mixer has a first input coupled to the at least one reference signal generator. The switch is configured to selectively couple a second input of the mixer to the transceiver path or the amplitude control circuit of the at least one test tone generator.
Abstract:
This disclosure describes apparatuses, methods, and techniques for implementing a multimode frequency multiplier. In example implementations, an apparatus for generating a frequency includes a multimode frequency multiplier. The multimode frequency multiplier includes a multiphase generator and a reconfigurable frequency multiplier. The multiphase generator is configured to produce a first signal including multiple phase components and having a first frequency. The reconfigurable frequency multiplier is coupled in series with the multiphase generator. The reconfigurable frequency multiplier is configured to produce a second signal based on the first signal and having a second frequency that is a multiple of the first frequency.
Abstract:
A phase-locked loop (PLL) may include a phase-frequency detector (PFD), a phase interpolation (PI)-based sampler, a loop filter, a voltage-controlled oscillator (VCO), and a fractional frequency divider. The PFD output corresponds to a phase error between a reference clock signal and a feedback signal. The PI-based sampler produces a slope signal in response to the PFD output, and adjusts the slope signal in response to a quantization error correction indication. The PI-based sampler also samples the slope signal. The loop filter produces a VCO control signal in response to a sampled slope signal. The VCO control signal controls the VCO frequency. The fractional frequency divider circuit divides the frequency of the VCO output signal and also determines the quantization error correction corresponding to the quantization error introduced by fractional division of the frequency of the VCO output signal.
Abstract:
Certain aspects of the present disclosure provide a low drop-out (LDO) regulator. The LDO regulator generally includes a first p-type metal-oxide-semiconductor transistor (PMOS) having a drain coupled to an output node of the LDO regulator, a first amplifier having an input coupled to a reference voltage node and an output coupled to a gate of the first PMOS transistor, a second PMOS transistor having a source coupled to the output node, and a second amplifier having an input coupled to the output node and an output coupled to a gate of the second PMOS transistor.
Abstract:
A dual-band voltage controlled oscillator (VCO) includes: a first oscillator circuit including a first inductor; a second oscillator circuit including a second inductor; a first mode switch configured to electrically connect or disconnect a first output terminal of the first oscillator circuit and a first output terminal of the second oscillator circuit; a second mode switch configured to electrically connect or disconnect a second output terminal of the first oscillator circuit and a second output terminal of the second oscillator circuit; a third mode switch configured to electrically connect or disconnect a first terminal of the first inductor and a first terminal of the second inductor; and a fourth mode switch configured to electrically connect or disconnect a second terminal of the first inductor and a second terminal of the second inductor.
Abstract:
Reconfiguring a transceiver design using a plurality of frequency synthesizers and a plurality of carrier aggregation (CA) receiver (Rx) and transmitter (Tx) chains, the method including: connecting a first frequency synthesizer to a first CA Tx chain; connecting the plurality of frequency synthesizers to the plurality of CA Rx chains, wherein a second frequency synthesizer of the plurality of frequency synthesizers is connected as a shared synthesizer to a first CA Rx chain and a second CA Tx chain.
Abstract:
A device includes a main two-stage low noise amplifier (LNA) configured to amplify a carrier aggregation (CA) communication signal, the main two-stage LNA comprising a first LNA stage and a second LNA stage, an output of the first LNA stage having a first stage second order intermodulation product, the second LNA stage comprising a phase-inverter configured to phase-invert the output of the first LNA stage to generate a second stage phase-inverted output, and an auxiliary LNA stage coupled to the main two-stage LNA, the auxiliary LNA stage configured to cancel the first stage second order intermodulation product.
Abstract:
Multiplex modules for use in carrier aggregation receivers are disclosed. In an exemplary embodiment, an apparatus includes an LNA multiplexer configured to receive a plurality of RF signals at a plurality of input terminals and to combine the RF signals into a combined RF signal that is output from an output terminal The apparatus also includes an LNA demultiplexer configured to receive the combined RF signal at an input port that is connected to the output terminal and to distribute the combined RF signal to a plurality of output ports.
Abstract:
Aspects of the disclosure relate to a ring oscillator (RO) frequency divider configured to frequency divide an input clock by a programmable divider ratio to generate an output clock. In this regard, the RO frequency divider receives the input clock, enables each of a ring of N cascaded inverter stages substantially one at a time in response to the input clock; and outputs a second clock from an output of one of the ring of N cascaded inverter stages. In one aspect, each stage includes a p-channel metal oxide semiconductor field effect transistor (PMOS FET) coupled in series with an n-channel metal oxide semiconductor field effect transistor (NMOS FET). In another, each stage includes two PMOS FETs and an NMOS FET.
Abstract:
In certain aspects, a sampler includes a sampling capacitor, a precharge switch coupled to the sampling capacitor, one or more discharge circuits coupled to the sampling capacitor, and a reference-voltage circuit coupled to the sampling capacitor. The reference-voltage circuit is configured to generate a reference voltage based on a supply voltage, and generate a voltage difference between a voltage on the sampling capacitor and the reference voltage.