Abstract:
A fixed type constant velocity universal joint of an eight-ball undercut-free type has improved torque capacity at high operating angle while ensuring durability at low operating angle. Centers of a track groove (32) of an outer joint member and a track groove (35) of an inner joint member are respectively separated from a center plane (P) toward axially different sides, and are offset away from a joint center axis (X) to a radially opposite side relative to grooves (35). When Rt represents a distance between a center of a ball (37) and the center of groove (32), and F represents an axial distance between plane (P) and the center of groove (32), a ratio R1 between F and Rt is 0.061≦R1≦0.087. When fr represents a radial offset amount as a distance between axis (X) and the center of groove (32), a ratio R3 between fr and Rt is 0.07≦R3≦0.19.
Abstract:
An opposed path joint comprising an inner hub, which is provided with first inner grooves and second inner grooves, and comprising an outer hub, which is provided with first outer grooves and second outer grooves that respectively form a pair with the first and second inner grooves. The opposed path joint also comprises an annular cage, which is placed between the inner hub and the outer hub and which has a radial openings whose number corresponds to that of the groove pairs. Balls that engage inside the grooves are guided inside these radial openings. According to the invention, the outer hub of the opposed path joint is a single-piece closed ring, in which the outer grooves are formed without cutting. Alternatively, the outer hub has at least two elements that are located one behind the other on the outer hub axis and, together, center the cage.
Abstract:
The invention relates to a constant velocity joint having an outer part (3), an inner part (8), a cage (14) and balls (24). For the purpose of fitting the inner part (8) in the cage (14), there is provided a groove (16a) which can be entered by the inner part (8) by means of the web (13), so that the inner part (8) can be introduced into the cage (14), although the outer diameter of the inner part (8) is greater than that of the end aperture of the cage (14).
Abstract:
In a constant velocity joint, the inner running grooves start from a first end of the inner part and extend along the entire length of the inner part as far as a second end. The inner running grooves are open toward the second end, and toward a central recess which starts from the second end. The central recess provides a lubricant groove function. Further, the inner running grooves preferably have a first portion and a second portion. The first portion serves to receive an associated ball extending through a cage and into the outer part. The second portion also provides a lubricating function.
Abstract:
A constant velocity universal ball joint has a bell-shaped outer joint part which is open at one end. The outer joint part includes longitudinally extending circumferentially distributed outer ball tracks. An inner joint part with longitudinally extending circumferentially distributed inner ball tracks is positioned within the outer part such that the outer and inner tracks are arranged radially opposite one another to form pairs. A torque transmitting ball is received in each track pair. A cage is arranged between the outer joint part and the inner joint part and holds the balls in a common plane in circumferentially distributed cage windows. The cage guides the balls on to the angle bisecting plane when the axes of the outer and inner joint part are articulated relative to one another. The outer joint part is produced, especially by extrusion, forging or deep-drawing. The forming provides outer ball tracks which, if viewed from the open end, are axially undercut-free. Inner faces are positioned between the outer ball tracks. The outer part includes wall regions which start from the open end, are axially limited, are deformed radially inwardly, and are arranged between two outer ball tracks. The wall regions, whose width is smaller than the circumferentially directed distance between the respective outer ball tracks, are deformed. The deformed wall regions each form cage guiding faces positioned between the outer ball tracks and provide support towards the open end.
Abstract:
A constant velocity fixed joint having an outer joint part, an inner joint part, a cage and torque transmitting balls has the cumulative clearance errors of the joint minimized via the fixing method of supporting inserts. This is achieved in that a ring is provided with at least two fingers pointing axially and radially inward into the cavity of the outer joint part and arranged between two outer running grooves so as to abut the spherical contact face of the cage. While the clearances between the internal joint components are positioned at a predetermined relationship, the ring is positioned at an axial distance from a reference face located at the open end of the outer joint part and that the ring, while observing a predetermined axial play, is connected to the outer joint part. The inner faces of the outer joint part arranged between the outer running grooves thus being held at a predetermined position relative to the spherical outer face of the cage. A method is provided which substantially facilitates handling while individual supporting inserts are attached and which allows the joint play to be set in the specified way. This is achieved in that the outer joint part is provided with recesses arranged between the outer running grooves. Wedge-shaped inserts serving to axially secure the cage and being connected to one another by an annular strip are inserted into the recesses. The wedge-shaped inserts are welded to the recesses and after the welding operation the annular strip between the wedge-shaped supporting inserts is removed.
Abstract:
A constant velocity universal ball joint has an outer joint part and an inner joint part. Each part is provided with a plurality of ball tracks extending substantially in a longitudinal direction. The balls provide torque transmission and are guided in radially opposed tracks in the outer joint part and in the inner joint part. A cage with cage windows holds each ball in a plane positioned perpendicularly relative to the longitudinal axis. The cage includes a mechanism which, if the axes of the outer joint part and the inner joint part deviate from one another, guide the cage with the balls on to the angle-bisecting plane. Each of the track faces of the ball tracks, at the outer joint part and/or at the inner joint part, are subjected to loads by the balls, as well as each of the regions of the surfaces adjoining the ball tracks, which are guiding faces for the cage, undergo a hardening operation. Also, unhardened zones are provided between each two ball tracks between the guiding faces.
Abstract:
A constant velocity universal joint is used as a fixed joint having an outer joint part (2) provided with first meridional ball tracks (6), and a ball hub (4) provided with second meridional ball tracks (7), the center lines of the ball tracks (6, 7) being undercut-free in the same axial projection. A joint base (1) is connected to the outer joint part (2) and is positioned at the open end of the undercut-free ball tracks (6, 7). The joint interior is provided with semi-spherical contact faces (16) between an axially inner partial region of the outer surface (11) of the cage (3) and guiding faces (9) in the joint base (1) while the joint exterior is provided with semi-spherical contact faces (17) between an axially outer partial region of the inner face (12) of the cage (3) and guiding faces (10) of the ball hub (4). The remaining partial regions (18, 19) of the outer joint part (2) and ball hub (4) respectively positioned beyond the contact regions (9, 10, 16, 17) are not in contact with the cage (3) due to free space recesses (13, 14).
Abstract:
A method of manufacturing a universal joint outer housing which produces an extrusion which consists of two outer housing instead of one. The outer housing are formed adjacent to each other and are separated during the machining of the finished housings. This provides a significant cost saving by providing two extrusions during a process which originally produced only a single extrusion.
Abstract:
The invention relates to a wheel bearing/constant velocity joint unit having a double row bearing 2 which has been provided with at least one inner bearing ring 12 which is separate from the wheel hub 1. The wheel hub and the outer part of the constant velocity joint are form-fittingly and non-rotatingly connected to each other by spur teeth. The spur teeth at the wheel hub are preferably produced by orbital pressing or orbital forging, and while the forming process takes place a collar is produced at the wheel hub which serves for axially tensioning the inner bearing rings, at least the one of the joint end.