Abstract:
A die assembly (10) for extruding a polymeric coating onto a wire so as to impart a matte finish to the coating surface is provided. The die assembly (10) comprises: A) a die tip (13) comprising a tubular channel (22) through which a wire can pass, the channel (22) positioned along the central longitudinal axis (26) of the die assembly (10); B) a die body (12) comprising a trunk (15) and a head (16), the head (16) comprising a tubular channel (20), the head tubular channel (20) comprising a die land (21), the trunk (15) positioned about the die tip (13) so as to define an annular space (25) between the exterior surface (23) of the die tip (13) and the interior surface (24) of the trunk (15); C) a die holder (11) positioned about and in contact with the exterior surface (17) of the trunk (15); and D) a radiator (14) positioned about and in contact with the exterior surface (19) of the die land (21) of the die head (16).
Abstract:
Techniques for coding and deriving (e.g., determining) one or more coded-block-flags associated with video content are described herein. A coded-block-flag of a last node may be determined when coded-block-flags of preceding nodes are determined to be a particular value and when a predetermined condition is satisfied. In some instances, the predetermined condition may be satisfied when log2(size of current transform unit) is less than log2(size of maximum transform unit) or log2(size of current coding unit) is less than or equal to log2(size of maximum transform unit)+1. The preceding nodes may be nodes that precede the last node on a particular level in a residual tree.
Abstract:
The invention related to the recycling field of waste printed circuit boards (WPCB), and especially involved a complete non-cyanogens wet process for green recycling of WPCB, which belonged to the field of recycle economy. In the invention, the process included that WPCB were broken by the jaw crusher, and then mixed copper powders and nonmetallic powders were separated by the method of air classification, the mixed copper powders were smelted and casted to get copper anode plates, the copper was purified by electrolytion, the valuable metals (such as copper, gold, silver, platinum and palladium, lead and tin) were recycled from the copper anode slime, and the waste water was recycled. The recovery ratio of all-metal was above 98%. The purity of the cathode copper was up to 4N level. The ratio of de-coppering was above 96%. The recovery ratio of gold was above 98.
Abstract:
A production method for producing an oxygen sensor, includes spinning a precursor consisting of a salt of at least one metal chosen from Sc, Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Yb, Sr, Ba, Mn, Co, Mg, and Ga, a solvent, and a macromolecular polymer to produce nanofibers of the precursor containing the salt of the metal. The method further includes calcining the nanofibers of the precursor at a temperature ranging from 550° C. to 650° C. for 2 to 4 hours, and making a solid electrolyte material composed of the nanofibers obtained from the calcining. The resulting solid electrolyte material constitutes a part of the oxygen sensor.
Abstract:
Innovations in unified intra block copy (“BC”) and inter prediction modes are presented. In some example implementations, bitstream syntax, semantics of syntax elements and many coding/decoding processes for inter prediction mode are reused or slightly modified to enable intra BC prediction for blocks of a frame. For example, to provide intra BC prediction for a current block of a current picture, a motion compensation process applies a motion vector that indicates a displacement within the current picture, with the current picture being used as a reference picture for the motion compensation process. With this unification of syntax, semantics and coding/decoding processes, various coding/decoding tools designed for inter prediction mode, such as advanced motion vector prediction, merge mode and skip mode, can also be applied when intra BC prediction is used, which simplifies implementation of intra BC prediction.
Abstract:
Flame retardant compositions that include a thermoplastic polyurethane, a metal hydrate flame retardant and a phosphorus-based flame retardant are provided. The compositions are characterized by good flame retardant properties, as well as high insulation resistance.
Abstract:
Innovations in encoder-side decisions for coding of screen content video or other video can speed up encoding in various ways. For example, some of the innovations relate to ways to speed up motion estimation by identifying appropriate starting points for the motion estimation in different reference pictures. Many of the encoder-side decisions speed up encoding by terminating encoding for a block or skipping the evaluation of certain modes or options when a condition is satisfied. For example, some of the innovations relate to ways to speed up encoding when hash-based block matching is used. Still other innovations relate to ways to identify when certain intra-picture prediction modes should or should not be evaluated during encoding. Other innovations relate to other aspects of encoding.
Abstract:
A method and a system for transmitting data are provided. In a source apparatus, original data is divided into a plurality of source segments, a similarity calculation is performed for each of the source segments to obtain a similarity set, and the similarity set is transmitted to a target apparatus. In the target apparatus, whether a target segment corresponding to the source segment exists in the target apparatus is determined according to the similarity set to obtain a comparison result, and the comparison result is transmitted to the source apparatus. In the source apparatus, after the original data is dehydrated according to the comparison result to obtain dehydration data, the dehydration data is transmitted to the target apparatus. In the target apparatus, the dehydration data is rehydrated to the original data.
Abstract:
Acquisition of magnetic resonance (MR) data in a predetermined three-dimensional volume segment of an examination subject with an MR apparatus proceeds by the volume segment being excited with an RF excitation pulse, and repeated, temporally sequential implementation of the following in order to respectively read out an echo train: Switch a refocusing pulse. Switch a first phase coding gradient in a first direction and a second phase coding gradient in a second direction. Switch an additional magnetic field gradient for spatial coding in a third direction which is perpendicular to the first direction and the second direction, wherein the MR data of a k-space line are read out while the additional magnetic field gradient is switched. Every k-space line corresponds to a line of k-space that corresponds to the volume segment. At least one k-space line is read out repeatedly in a middle segment of k-space.
Abstract:
A receiver of a magnetic resonance imaging system and a magnetic resonance imaging system are provided. The receiver includes a receiving end for receiving an analog magnetic resonance signal from a local coil of the magnetic resonance imaging system, a sending end for sending a digital magnetic resonance signal to an image reconstruction apparatus of the magnetic resonance imaging system, at least two digital processing channels connected to the sending end for digitizing the analog magnetic resonance signal to the digital magnetic resonance signal, and a channel selection unit connected between the digital processing channels and the receiving end for selecting a corresponding digital processing channel from the digital processing channels according to type information about the local coil. The embodiments may be compatible with many types of local coils without re-designing the local coils, which significantly reduces the cost of the system.