Abstract:
A MOS-technology power device including a semiconductor material layer of a first conductivity type having a body region disposed therein. The body region includes a heavily doped region of a second conductivity type, a lightly doped region of the second conductivity type and a heavily doped region of the first conductivity type and a process of making same. A method of making the semiconductor device includes forming an insulated gate layer on portions of the surface of the semiconductor material layer to leave selected portions of the semiconductor material layer exposed. Ions of the second conductivity type are implanted into the selected regions of the semiconductor material layer. The implanted ions are thermally diffused to form body regions, each body region including a heavily doped region substantially aligned with the edges of the insulated gate layer, and a lightly doped region formed by lateral diffusion of the first dopant under the insulated gate layer. Ions of the first conductivity type are then implanted into the heavily doped regions to form source regions substantially aligned with the edges of the insulated gate layer.
Abstract:
A memory device that includes an internal bus for the transfer of data and reporting signals from and to the memory and output pre-buffers for the transfer of data to output terminals of said memory, a pulse generation circuit for the synchronized loading of data in an output pre-buffer. Additional circuitry is provided that includes a synchronization circuit; a transmission path delay reproduction circuit for reproducing the propagation delays of the data transmitted to the output terminals; and a pre-buffer delay reproduction circuit for reproducing the propagation delays of the output pre-buffers. The synchronization circuit is adapted to synchronize the generation of at least one pulse that is synchronized with the propagation delays reproduced by the transmission path delay reproduction circuit, and the pulse is adapted to enable the loading of the data in the output pre-buffers. The synchronization of the pulse is provided as a consequence of the assured presence of the data, and the synchronous pulse is restored after a time that is equal to the delay introduced by the pre-buffer delay reproduction circuit for reproducing the propagation delays of the output pre-buffers, so as to update the configuration of the output pre-buffers in the time interval determined by the synchronous pulse.
Abstract:
A nonvolatile static memory includes a matrix of elementary cells addressable through bit-lines (columns) and word-lines (rows) mutually orthogonal among each other, the matrix being divided in two orders of subblocks, respectively left and right, aligned in a direction of extension of the word-lines and symmetrical by pairs. At least one row predecoding circuit and a plurality of row decoding circuits are provided for the subblocks. Column predecoding circuits and a plurality of column multiplexers are provided for the subblocks and controlled by the column predecoding circuits. A first main predecoding circuit of the address bus generates a first bus, a second bus and a third bus. In addition, a pair of main row decoding circuits combines signals of the first, second and third buses and generates a resulting number of main row decoding lines, each stimulating respective row decoding circuits of the right and left subblocks. Two pairs of local row predecoding circuits are provided for each of the right and left subblocks, a first pair for word-lines of even order and a second pair for word-lines of odd order of the right and left subblocks, respectively, and are stimulated by the address bus to generate a fourth bus and a fifth bus, respectively.
Abstract:
A sectorized electrically erasable and programmable non-volatile memory device comprises: a plurality of individually-addressable memory sectors, each memory sector comprising an array of memory cells arranged in rows and columns; redundancy columns of redundancy memory cells for replacing defective columns of memory cells; and a redundancy control circuit for storing addresses of the defective columns and activating respective redundancy columns when said defective columns are addressed. Each memory sector comprises at least one respective redundancy column. The redundancy control circuit comprises at least one memory means comprising individually addressable memory locations each one associated with a respective memory sector for storing, individually for each memory sector, addresses of a defective column belonging to the memory sector, and an address recognition means associated with said memory means for recognizing if a current address supplied to the memory device coincides with a defective column address stored in an addressed one of said memory locations associated with a currently addressed memory sector.
Abstract:
The memory device in accordance with the present invention has hierarchical row decoding architecture and comprises at least one main decoder and a plurality of secondary decoders. The decoders have outputs coupled to a plurality of word lines respectively through a plurality of auxiliary lines having first ends respectively connected to said outputs and second ends respectively connected to intermediate points of the word lines.
Abstract:
A redundancy management method, particularly for non-volatile memories, includes the steps of: enabling, as a consequence of the presence of a pulsed read address transition signal of a memory line, and throughout the duration of the pulsed signal, the memory matrix line reading path, and blocking the selection of redundancy lines of the memory; and at the end of the pulsed signal, as a consequence of the absence/presence of a redundancy line read signal, confirming/disabling the selection of the lines of the memory matrix and blocking/releasing the selection of the redundancy lines. A redundancy management architecture for a memory matrix, adapted to perform the above method, blocks or releases redundancy line selection during address switching, but does not block selection of memory matrix word lines.
Abstract:
Reading circuit for multilevel non-volatile memory cell devices having, for each cell to be read, a selection line with which is associated a load and a decoupling and control stage with a feedback loop which stabilizes the voltage on a circuit node of the selection line. To this node are connected a current replica circuit which are controlled by the feedback loop. These include loads and circuit elements homologous to those associated with the selection line of the memory cell and have an output interface circuit for connection to current comparator circuit.
Abstract:
The present invention is directed to a redundant UPROM cell incorporating at least one memory element of the EPROM or flash type having a control terminal and a conduction terminal to be biased, a register with inverters connected to the memory element, and MOS transistors connecting the memory element with a reference low voltage power supply. There is provided a precharge network for the conduction terminal of the flash cell and the network incorporates a complementary pair of transistors. The second transistor of the pair is a natural N-channel MOS type. With the UPROM cell is associated a circuit portion for generating a second live output signal to be applied to the control terminal of the second transistor. The circuit portion includes a timing section and a generation section for the second live output signal.
Abstract:
A power-on-reset (P.O.R.) circuit produces a power-on-reset (P.O.R.) signal whose an amplitude tracks the voltage on a supply node until it exceeds a certain threshold. The circuit has a first monitoring and comparing circuit portion including at least a nonvolatile memory element having a control gate coupled to the supply node, a first current terminal coupled to a ground node, and a second current terminal coupled to a first node which is capacitively coupled to the supply node. The circuit further includes a second circuit portion that includes an intrinsically unbalanced bistable circuit, having a node that intrinsically is in a high state at power-on coupled to the first node that is intrinsically in a low state at power-on coupled to the input of an output buffer.
Abstract:
A redundancy memory register for storing defective addresses of defective memory elements in a memory device includes a plurality of memory units each one storing a respective defective address bit and comparing the defective address bit stored therein with a respective current address bit of a current address supplied to the memory device. The register includes a first group of memory units and a second group of memory units storing a first defective address, and a third group of memory units storing, together with the first group, a second defective address which has an address part in common with the first defective address. The first and second group of memory units supply first redundancy selection means for selecting a first redundancy memory element when the current address coincides with the first defective address. The first and third group of memory units supply second redundancy selection means for selecting a second redundancy memory element when the current address coincides with the second defective address. The register comprises first address configuration detection means for detecting if the current address coincides with a default configuration stored in the first and second group of memory units and for correspondingly deactivating the first and second redundancy selection means, and second address configuration detection means for detecting if the current address coincides with a default configuration stored in the third group of memory units and for consequently deactivating the second redundancy selection means.