Abstract:
An end cover assembly for a battery comprises a cover plate; a scabbard mounted on the cover plate; a connector; and a sealing material. The cover plate comprises an opening. The scabbard comprises an interior channel. The opening is in communication with the channel. The connector is disposed in the interior channel and protrudes from the scabbard. The sealing material is disposed in the interior channel and extends beyond the upper portion of the scabbard and wraps around the outside of the scabbard to form a protective flange.
Abstract:
A hybrid power driving system includes a planetary gear mechanism having a first rotating component, a second rotating component, and a third rotating component. The system also includes an electric motor operatively coupled to the first rotating component, a clutch, an internal-combustion engine operatively coupled to the first rotating component by the clutch, and a brake operatively coupled to the second rotating component and configured to control the second rotating component in a locked position or in an unlocked position. The third rotating component is operatively coupled to an output end to provide rotational power.
Abstract:
A hybrid vehicle has a power system with a torsional coupling. The power system includes a battery system for receiving, storing and providing electrical power, an internal combustion engine configured to provide rotational power through a flywheel, a first motor-generator, a second motor-generator, a control system, and a torsional coupling. The torsional coupling may absorb rotational shock caused by angular or rotational speed differences between the engine and the first motor-generator. The torsional coupling includes a driven plate assembly, a cover assembly and an interconnecting plate assembly. The interconnecting plate assembly may include a plurality of shock absorbing elements that absorb shock and vibration between the engine and the motor-generator.
Abstract:
A hybrid vehicle includes two front wheels, two rear wheels, an internal combustion engine, a first motor/generator, and a second motor/generator. The first motor/generator may be rotatably coupled to the internal combustion engine, and the second motor/generator may be rotatably coupled to at least one wheel of the hybrid vehicle. The first motor/generator, the second motor/generator and a gear transmission are housed within the engine compartment and are located between two front wheels and arranged in a substantially linear manner. The first motor/generator, the second motor/generator, and the gear transmission are located substantially above a centerline of the front wheels of the vehicle
Abstract:
A hybrid vehicle includes a battery system, an internal combustion engine, a first motor/generator, a second motor/generator, and an engageable clutch assembly. The engageable clutch assembly is disposed between the internal combustion engine and the first motor/generator. When engaged, the engageable clutch assembly couples the rotor spindle of the second motor/generator with the hollow rotor shaft of the first motor/generator. The engageable clutch assembly may also operate in a first mechanical mode that selectively engages and disengages the internal combustion engine from the second motor/generator, or operate in a second mechanical mode that dampens shock between the internal combustion engine and the first motor/generator when the international combustion engine operates at a rotational speed that is different than a rotational of the first motor/generator.
Abstract:
A control system for a hybrid vehicle controls the various operating modes of the hybrid vehicle. Operating modes of the hybrid vehicle include an electric-only power mode, a series hybrid mode, a series hybrid dual-power mode, and a parallel hybrid tri-power mode. The control system selects one of the operating modes for the hybrid vehicle based on one or more inputs and comparisons. Examples of inputs for the control system include a gear-mode, a present battery storage capacity, a present velocity of the hybrid vehicle, and the previous operating mode of the hybrid power system. The control system may also take into account whether a user has selected the electric-only power mode. The control system may also control the operations of one or more components of the hybrid vehicle while operating in one of the operating modes.
Abstract:
A hybrid power output system for outputting the power to the wheel driving shaft, including and engine, a first motor, a second motor, a third motor, a battery, a first clutch, a second clutch, and a third clutch, wherein the first motor and the second motor are connected electrically with the battery, and the third motor is connected electrically with the battery or another battery; the engine is connected to the first motor via the first clutch, and connected to the third motor via the third clutch; the first motor is connected to the second motor via the second clutch, and the second motor is connected to a wheel driving shaft. The hybrid power output system can reduce the response time of the vehicle, perfect power performance, save space, and reduce cost as well.
Abstract:
A nickel-free sealing reagent comprises an alkyl sodium sulfonate compound, a dispersing agent, and a siloxane defoaming agent. A method of sealing an alloy comprises applying a nickel-free sealing reagent to the alloy, wherein the sealing agent comprises an alkyl sodium sulfonate compound, a dispersing agent, and a siloxane defoaming agent.
Abstract:
A hybrid power system includes an engine, a clutch, a transmission, a motor and an energy storage device. The motor is connected to the energy storage device and the engine is connected to the input shaft of the transmission by the clutch. The output shaft of the transmission is operatively coupled with the output shaft of the motor to provide a coupled power output.
Abstract:
An electrochemical storage cell is disclosed which includes at least one cathode sheet, at least one anode sheet and at least one separator sheet combined to make a core. The core is housed within a rectangular shell with four sides and two ends, sealed with an air-tight seal. The cell further includes a blow out vent in at least one of the two ends of the shell. This blow out vent is adapted to open and release excess pressure above a predetermined level to thereby prevent catastrophic rupture of the shell.