Abstract:
A receiver circuit with low power consumption and a method for reducing power consumption of a receiver system are provided. The method for reducing power consumption of the receiver system comprises steps of: providing a signal receiver module; intermittently enabling/disabling the signal receiver module when a microprocessor is in a sleep mode; detecting whether the signal receiver module receives a signal when the signal receiver module is enabled; and waking the microprocessor up to decode the received signal if the signal receiver module receives the signal.
Abstract:
A device with both functions of wireless power transmitter and wireless power receiver and a circuit thereof are provided in the present invention. The device with both functions of wireless power transmitter and wireless power receiver and the circuit thereof use the same winding for performing the energy output and the energy receiving function. In addition, in order to use the same winding for performing the energy output and the energy receiving function, the present invention adopts full bridge topology. However, two lower switches are controlled by the resonant circuit when the device is in the energy receiving mode. The upper switches are not only for receiving the power voltage, but also for rectifying the energy received from the winding to output to the device with both functions of wireless power transmitter and wireless power receiver.
Abstract:
An infrared circuit for a single battery and a remote controller using the same are provided. The single battery outputs a battery voltage. The infrared circuit comprises an IR LED circuit, an inductor and a microcontroller. The IR LED circuit is coupled between the battery voltage and a common voltage. The inductor is coupled between the battery voltage and the common voltage. The microcontroller has an I/O port coupled to the inductor and the IR LED circuit. When infrared rays are emitted, the microcontroller controls the battery voltage to charge the inductor through the I/O port, and a continuous current of the inductor forces the IR LED circuit to turn on.
Abstract:
A system for identifying identity (ID) and an ID card using the same are provided in the present invention. The ID card utilizes a specific ID reader to identify the ID of the ID card. The ID card includes a card case, a plurality of disposing positions for electrodes and at least a specific conductor electrode. The disposing positions are disposed in the card case. The specific conductor electrode(s) is/are disposed on at least one of the disposing positions according to the ID of the ED card. The specific card reader includes a flat panel sensor. When the ID card is close to the flat panel sensor of the card reader, the flat panel sensor senses the position of the conductor electrode(s) to determine the ID of the ID card.
Abstract:
A method for power-on sequence and a device with a low current power source are provided in the present invention. The method is used for enabling a device including a low current power source, a first circuit module and a second circuit module, wherein the low current power source is used for providing a power voltage. The method includes: switching a low voltage reset signal from a first logic voltage to a second logic voltage when the power voltage rise to a threshold voltage; enabling the first circuit module after a first preset time from the time when the low voltage reset signal switches from the first logic voltage to the second logic voltage; and enabling the second circuit module after a second preset time from the time when the first circuit module is enabled.
Abstract:
The present invention relates to a position identification system and a method for gesture identification thereof. The method for gesture identification does not use the conventional digital image capture method, instead, the method uses IR detection. In order to accurately detect the movement track of the external object, in the present invention, at least two IR LED are provided. When the first IR LED emits the IR ray signal, the second IR LED is used for receiving IR ray signal. Moreover, the present invention determines the distance between the external object and the IR LEDs by detecting the emitting IRs with different energy. Further, the present invention adopts TDM (Time Division Multiplexing) such that the present invention can grasp the distance between the first IR LED and the external object and the distance between the second IR LED and the external object. Thus, the relative position of the external object can be captured.
Abstract:
A self-balance mobile carrier is provided in the present invention. The self-balance mobile carrier includes a first direction load cell, a second direction load cell, a third direction load cell, a fourth direction load cell, a motion apparatus and a control circuit. Each of the load cells respective include a pressure-sensing plane and an electrical signal output terminal, for respectively converting the pressure on the pressure-sensing plane to an electrical signal and outputting the electrical signal to the electrical signal output terminal. The control circuit is coupled to the electrical signal output terminals of the first, second, third, and fourth direction load cells and the motion apparatus. The control circuit changes the moving direction of the motion apparatus according to the difference of the electrical signals of the first, second, third, and fourth direction load cells.
Abstract:
An expandable device for wireless audio input is provided in the present invention. The expandable device for wireless audio input is compatible with an audio provider, wherein the audio provider is used for converting an audio to a wireless signal to output the wireless signal. The expandable device for wireless audio input is used for outputting an audio signal to an audio output device, wherein, the audio output device includes a first audio jack. The expandable device for wireless audio input includes a first audio jack plug, a wireless receiver and a second audio jack. The first audio jack plug is used for outputting a first audio signal. The wireless receiver receives the wireless signal outputting from the audio provider and converts the wireless signal into the first audio signal to transmit to the first audio jack plug. When a second audio signal is inputted from the second audio jack plug, the second audio signal is provided to the first audio jack plug.
Abstract:
The present invention provides an electronic device having remote control functions, comprising a baseband circuit, a PWM circuit, and an external wireless transmitting circuit. The external wireless transmitting circuit includes a second I/O port and a wireless transmitting unit. The PWM circuit is disposed at the output of the baseband circuit; the driving signal is output according to the control signal output by the baseband circuit for enhancing the intensity of the control signal and thus further reducing the volume of the external wireless transmitting circuit. In addition, by adding an infrared contact part of the first I/O port, the electronic device can transmit the driving signal to the external wireless transmitting circuit via the infrared contact part. Alternatively, the electronic device can transmit the driving signal to the external wireless transmitting circuit via one of the plurality of audio contact parts of the first I/O port by switching.
Abstract:
A self-adaptive positioning device for detection region and a product thereof are provided in the present invention. The self-adaptive positioning device for detection region includes a housing, a marking object and a detector. The shell includes an aperture. The marking object is disposed on a preset position behind the center point of the aperture in the shell. The detector has a detection region. The region forming by the marking object and the edge of the aperture is analog to the detection region. Therefore, when a user can see the marking object, it means that the user is in the detection region.